Thomas Zeuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103518/publications.pdf

Version: 2024-02-01

40 papers 1,502 citations

394421 19 h-index 315739 38 g-index

44 all docs

44 docs citations

44 times ranked $\begin{array}{c} 1392 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides. Energy & Energy & 2018, 32, 10202-10217.	5.1	220
2	A Fully Size-Resolved Perspective on the Crystallization of Water Clusters. Science, 2012, 337, 1529-1532.	12.6	167
3	A comprehensive and compact n-heptane oxidation model derived using chemical lumping. Physical Chemistry Chemical Physics, 2007, 9, 1107-1126.	2.8	110
4	Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame. Combustion and Flame, 2015, 162, 2045-2058.	5.2	107
5	A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction. Combustion and Flame, 2008, 155, 651-674.	5.2	104
6	A size resolved investigation of large water clusters. Physical Chemistry Chemical Physics, 2014, 16, 6859.	2.8	91
7	A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flames. Physical Chemistry Chemical Physics, 2004, 6, 3824-3835.	2.8	81
8	Infrared Detection of Criegee Intermediates Formed during the Ozonolysis of βâ€Pinene and Their Reactivity towards Sulfur Dioxide. Angewandte Chemie - International Edition, 2014, 53, 715-719.	13.8	54
9	Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames. Zeitschrift Fur Physikalische Chemie, 2011, 225, 1029-1054.	2.8	52
10	The end of ice I. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24413-24419.	7.1	50
11	Sodium doped hydrogen bonded clusters: Solvated electrons and size selection. Chemical Physics Letters, 2013, 579, 1-10.	2.6	38
12	Communications: Observation of two classes of isomers of hydrated electrons in sodium-water clusters. Journal of Chemical Physics, 2010, 132, 221102.	3.0	34
13	Kinetic Modeling of NO <i></i> Formation and Consumption during Methanol and Ethanol Oxidation. Combustion Science and Technology, 2019, 191, 1627-1659.	2.3	33
14	Insights into nitromethane combustion from detailed kinetic modeling – Pyrolysis experiments in jet-stirred and flow reactors. Fuel, 2020, 261, 116349.	6.4	32
15	Prompt NO formation in flames: The influence of NCN thermochemistry. Proceedings of the Combustion Institute, 2013, 34, 657-666.	3.9	31
16	Infrared detection of (H ₂ O) ₂₀ isomers of exceptional stability: a drop-like and a face-sharing pentagonal prism cluster. Physical Chemistry Chemical Physics, 2014, 16, 26691-26696.	2.8	28
17	Structural diversity in sodium doped water trimers. Physical Chemistry Chemical Physics, 2012, 14, 9054.	2.8	25
18	Mechanisms and rates of the reactions C2H5+O and 1-C3H7+O. Proceedings of the Combustion Institute, 2002, 29, 1247-1255.	3.9	23

#	Article	IF	CITATIONS
19	On the implications of nitromethane $\hat{a} \in \mathbb{N}$ NO chemistry interactions for combustion processes. Fuel, 2021, 289, 119861.	6.4	21
20	Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of \hat{l}^2 -pinene and 2-butene. Physical Chemistry Chemical Physics, 2012, 14, 15637.	2.8	20
21	Size resolved infrared spectroscopy of Na(CH3OH)n (n = $4\hat{a}\in$ "7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron. Physical Chemistry Chemical Physics, 2012, 14, 3004.	2.8	18
22	The reaction of allyl radicals with oxygen atomsâ€"rate coefficient and product branching. Proceedings of the Combustion Institute, 2009, 32, 157-164.	3.9	17
23	Pressure dependent mechanistic branching in the formation pathways of secondary organic aerosol from cyclic-alkene gas-phase ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 10952-10964.	2.8	16
24	Formation and Decomposition of Chemically Activated Cyclopentoxy Radicals from the c-C5H9 + O Reaction. Journal of Physical Chemistry A, 2006, 110, 3165-3173.	2.5	15
25	Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling. Physical Chemistry Chemical Physics, 2017, 19, 18128-18146.	2.8	15
26	Pressure dependent aerosol formation from the cyclohexene gas-phase ozonolysis in the presence and absence of sulfur dioxide: a new perspective on the stabilisation of the initial clusters. Physical Chemistry Chemical Physics, 2012, 14, 11695.	2.8	14
27	Sodium Microsolvation in Ethanol: Common Features of Na(HO-R) < sub > <i> n < /i > (R = H,) Tj ETQq1 1 0.784 6068-6076.</i>	314 rgBT / 2.5	/Overlock 1 13
28	Size-Resolved Infrared Spectroscopic Study of Structural Transitions in Sodium-Doped (H ₂ O) _{<i>n</i>>} Clusters Containing 10–100 Water Molecules. Journal of Physical Chemistry A, 2015, 119, 2709-2720.	2.5	13
29	Rate coefficients for cycloalkyl + O reactions and product branching in the decomposition of chemically activated cycloalkoxy radicals: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2010, 12, 8953.	2.8	11
30	Detailed Chemical Kinetic Study of Acetaldehyde Oxidation and Its Interaction with NO _{<i>x</i>} . Energy & Energ	5.1	9
31	Suppressed Particle Formation by Kinetically Controlled Ozone Removal: Revealing the Role of Transientâ€Species Chemistry during Alkene Ozonolysis. Angewandte Chemie - International Edition, 2009, 48, 2231-2235.	13.8	7
32	Temperature evolution in IR action spectroscopy experiments with sodium doped water clusters. Physical Chemistry Chemical Physics, 2021, 23, 7682-7695.	2.8	7
33	Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O) <i>n</i> (<i>n</i> =) Tj ETQq1	1 _{3.0} 78431	.4 rgBT /Ov
34	Neutral Sulfuric Acid–Water Clustering Rates: Bridging the Gap between Molecular Simulation and Experiment. Journal of Physical Chemistry Letters, 2020, 11, 4239-4244.	4.6	6
35	Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics. Journal of Chemical Physics, 2018, 148, 104303.	3.0	5
36	The reaction of iso-propyl radicals with oxygen atoms: Rate coefficient, product branching, and relevance for combustion modeling. Proceedings of the Combustion Institute, 2011, 33, 283-291.	3.9	4

#	Article	IF	CITATIONS
37	Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction. Molecules, 2013, 18, 13608-13622.	3.8	4
38	Laserinduzierte Fluoreszenz von Iod in der Gasphase. Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2018, 25, 219-222.	0.4	0
39	Titelbild: Laserinduzierte Fluoreszenz von lod in der Gasphase (CHEMKON 6/2018). Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2018, 25, 215-215.	0.4	O
40	Real-time monitoring of aerosol particle formation from sulfuric acid vapor at elevated concentrations and temperatures. Physical Chemistry Chemical Physics, 2022, , .	2.8	0