Qiu-Yan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103456/publications.pdf

Version: 2024-02-01

218677 197818 3,107 109 26 49 citations g-index h-index papers 114 114 114 2666 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Establishment and Validation of Prognostic Nomograms for Endemic Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2016, 108, djv291.	6.3	281
2	Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase III multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 14-23.	2.8	226
3	Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial. Nature Medicine, 2021, 27, 1536-1543.	30.7	197
4	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase III multicentre randomised controlled trial. European Journal of Cancer, 2019, 119, 87-96.	2.8	150
5	Concurrent chemoradiotherapy with nedaplatin versus cisplatin in stage Il–IVB nasopharyngeal carcinoma: an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncology, The, 2018, 19, 461-473.	10.7	118
6	Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Research, 2020, 30, 950-965.	12.0	111
7	The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 93, 862-869.	0.8	110
8	Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nature Communications, 2021, 12, 741.	12.8	104
9	STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death and Differentiation, 2019, 26, 2314-2328.	11.2	81
10	The Association Between the Development of Radiation Therapy, Image Technology, and Chemotherapy, and the Survival of Patients With Nasopharyngeal Carcinoma: A Cohort Study From 1990 to 2012. International Journal of Radiation Oncology Biology Physics, 2019, 105, 581-590.	0.8	80
11	Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7, 13060-13068.	1.8	80
12	COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. Oncolmmunology, 2015, 4, e1044712.	4.6	79
13	A randomized trial of induction chemotherapy plus concurrent chemoradiotherapy versus induction chemotherapy plus radiotherapy for locoregionally advanced nasopharyngeal carcinoma. Oral Oncology, 2012, 48, 1038-1044.	1.5	65
14	Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Oncolmmunology, 2015, 4, e976507.	4.6	61
15	The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Research and Treatment, 2018, 50, 19-29.	3.0	56
16	Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis, 2020, 9, 65.	4.9	52
17	EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma. Cell Death and Differentiation, 2022, 29, 1513-1527.	11.2	45
18	Elevated peripheral blood lymphocyte-to-monocyte ratio predicts a favorable prognosis in the patients with metastatic nasopharyngeal carcinoma. Chinese Journal of Cancer, 2015, 34, 237-46.	4.9	44

#	Article	IF	Citations
19	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on induction chemotherapy response. Radiotherapy and Oncology, 2019, 137, 83-94.	0.6	44
20	High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 325-336.	0.8	41
21	Ten-year outcomes of survival and toxicity for a phase III randomised trial of concurrent chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma. European Journal of Cancer, 2019, 110, 24-31.	2.8	40
22	Combination of Tumor Volume and Epstein-Barr Virus DNA Improved Prognostic Stratification of Stage II Nasopharyngeal Carcinoma in the Intensity Modulated Radiotherapy Era: A Large-Scale Cohort Study. Cancer Research and Treatment, 2018, 50, 861-871.	3.0	38
23	Plasma Epstein-Barr viral DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget, 2016, 7, 6221-6230.	1.8	37
24	Identifying optimal candidates for local treatment of the primary tumor among patients with de novo metastatic nasopharyngeal carcinoma: a retrospective cohort study based on Epstein–Barr virus DNA level and tumor response to palliative chemotherapy. BMC Cancer, 2019, 19, 92.	2.6	33
25	Concurrent chemoradiotherapy with or without cetuximab for stage II to IVb nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2017, 17, 567.	2.6	29
26	Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1999-2012.	2.5	29
27	Is Hemoglobin Level in Patients with Nasopharyngeal Carcinoma Still a Significant Prognostic Factor in the Era of Intensity-Modulated Radiotherapy Technology?. PLoS ONE, 2015, 10, e0136033.	2.5	28
28	Different Prognostic Values of Plasma Epstein-Barr Virus DNA and Maximal Standardized Uptake Value of 18F-FDG PET/CT for Nasopharyngeal Carcinoma Patients with Recurrence. PLoS ONE, 2015, 10, e0122756.	2.5	27
29	CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. Journal of Experimental and Clinical Cancer Research, 2017, 36, 21.	8.6	26
30	Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma., 2020, 8, e000205.		26
31	Serum apolipoprotein A-I is a novel prognostic indicator for non-metastatic nasopharyngeal carcinoma. Oncotarget, 2015, 6, 44037-44048.	1.8	25
32	Deintensified Chemoradiotherapy for Pretreatment Epstein-Barr Virus DNA-Selected Low-Risk Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase II Randomized Noninferiority Trial. Journal of Clinical Oncology, 2022, 40, 1163-1173.	1.6	25
33	The diagnostic and prognostic values of plasma Epsteinâ€Barr virus DNA for residual cervical lymphadenopathy in nasopharyngeal carcinoma patients: a retrospective study. Cancer Communications, 2019, 39, 1-13.	9.2	24
34	Combining pretreatment plasma Epsteinâ€Barr virus DNA level and cervical node necrosis improves prognostic stratification in patients with nasopharyngeal carcinoma: A cohort study. Cancer Medicine, 2019, 8, 6841-6852.	2.8	22
35	Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma. JAMA Oncology, 2022, 8, 706.	7.1	22
36	The impact of the cumulative dose of cisplatin during concurrent chemoradiotherapy on the clinical outcomes of patients with advanced-stage nasopharyngeal carcinoma in an era of intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 977.	2.6	21

#	Article	IF	CITATIONS
37	Famitinib in combination with concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 1, openâ€label, doseâ€escalation Study. Cancer Communications, 2018, 38, 1-13.	9.2	20
38	Targeting the IRAK1–S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma. Cancer Research, 2021, 81, 1413-1425.	0.9	19
39	Induction Chemotherapy Plus Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma in Children and Adolescents: A Matched Cohort Analysis. Cancer Research and Treatment, 2018, 50, 1304-1315.	3.0	19
40	Efficacy of controlled-release oxycodone for reducing pain due to oral mucositis in nasopharyngeal carcinoma patients treated with concurrent chemoradiotherapy: a prospective clinical trial. Supportive Care in Cancer, 2019, 27, 3759-3767.	2.2	18
41	Subdivision of Nasopharyngeal Carcinoma Patients with Bone-Only Metastasis at Diagnosis for Prediction of Survival and Treatment Guidance. Cancer Research and Treatment, 2019, 51, 1259-1268.	3.0	18
42	With or without reirradiation in advanced local recurrent nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2016, 16, 774.	2.6	17
43	Effect of local treatment for metastasis and its sequence with chemotherapy on prognosis of post-treatment metastatic nasopharyngeal carcinoma patients. Oral Oncology, 2019, 92, 40-45.	1.5	17
44	The role of capecitabine as maintenance therapy in <i>de novo</i> metastatic nasopharyngeal carcinoma: A propensity score matching study. Cancer Communications, 2020, 40, 32-42.	9.2	16
45	The impact of smoking on the clinical outcome of locoregionally advanced nasopharyngeal carcinoma after chemoradiotherapy. Radiation Oncology, 2014, 9, 246.	2.7	15
46	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in stage III-IVb nasopharyngeal carcinoma patients with Epstein-Barr virus DNA ≥4000 copies/ml: a matched study. Oncotarget, 2016, 7, 29739-29748.	1.8	15
47	A Randomized Controlled Trial Comparing Two Different Schedules for Cisplatin Treatment in Patients with Locoregionally Advanced Nasopharyngeal Cancer. Clinical Cancer Research, 2021, 27, 4186-4194.	7.0	15
48	Pretreatment Serum Amyloid A and C-reactive Protein Comparing with Epstein-Barr Virus DNA as Prognostic Indicators in Patients with Nasopharyngeal Carcinoma: A Prospective Study. Cancer Research and Treatment, 2018, 50, 701-711.	3.0	14
49	LOX expression in primary nasopharyngeal carcinoma: correlation with prognostic parameters and outcome. Oncotarget, 2016, 7, 8200-8207.	1.8	14
50	Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma. BMC Cancer, 2018, 18, 1279.	2.6	13
51	Pretreatment quality of life as a predictor of survival for patients with nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2018, 18, 114.	2.6	13
52	<p>The development of a nomogram to predict post-radiation necrosis in nasopharyngeal carcinoma patients: a large-scale cohort study</p> . Cancer Management and Research, 2019, Volume 11, 6253-6263.	1.9	13
53	Systemic chemotherapy and sequential locoregional radiotherapy in initially metastatic nasopharyngeal carcinoma: Retrospective analysis with 821 cases. Head and Neck, 2020, 42, 1970-1980.	2.0	13
54	Establishment and validation of a nomogram for predicting survival in patients with de novo metastatic nasopharyngeal carcinoma. Oral Oncology, 2019, 94, 73-79.	1.5	12

#	Article	IF	CITATIONS
55	Establishment and validation of a nomogram for predicting the benefit of concurrent chemotherapy in stage II nasopharyngeal carcinoma: A study based on a phase III randomized clinical trial with 10-year follow-up. Oral Oncology, 2020, 100, 104490.	1.5	12
56	Cigarette smoke-associated inflammation impairs bone remodeling through NFκB activation. Journal of Translational Medicine, 2021, 19, 163.	4.4	12
57	Advanced-Stage Nasopharyngeal Carcinoma: Restaging System after Neoadjuvant Chemotherapy on the Basis of MR Imaging Determines Survival. Radiology, 2017, 282, 171-181.	7.3	11
58	Patterns of Failure and Survival Trends Of 720 Patients with Stage I Nasopharyngeal Carcinoma Diagnosed from 1990-2012: A Large-scale Retrospective Cohort Study. Journal of Cancer, 2018, 9, 1308-1317.	2. 5	11
59	The impact of Adult Comorbidity Evaluation-27 on the clinical outcome of elderly nasopharyngeal carcinoma patients treated with chemoradiotherapy or radiotherapy: a matched cohort analysis. Journal of Cancer, 2019, 10, 5614-5621.	2.5	11
60	Subdivision of de-novo metastatic nasopharyngeal carcinoma based on tumor burden and pretreatment EBV DNA for therapeutic guidance of locoregional radiotherapy. BMC Cancer, 2021, 21, 534.	2.6	11
61	Patterns of Failure and Survival Trends in 3,808 Patients with Stage II Nasopharyngeal Carcinoma Diagnosed from 1990 to 2012: A Large-Scale Retrospective Cohort Study. Cancer Research and Treatment, 2019, 51, 1449-1463.	3.0	11
62	Stratification of Candidates for Induction Chemotherapy in Stage III-IV Nasopharyngeal Carcinoma: A Large Cohort Study Based on a Comprehensive Prognostic Model. Frontiers in Oncology, 2020, 10, 255.	2.8	10
63	Establishment of a prognostic nomogram to identify optimal candidates for local treatment among patients with local recurrent nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104711.	1.5	10
64	IGFBP6 is a novel nasopharyngeal carcinoma prognostic biomarker. Oncotarget, 2016, 7, 68140-68150.	1.8	10
65	Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6, 38296-38307.	1.8	10
66	Identifying distinct risks of treatment failure in nasopharyngeal carcinoma: A study based on the dynamic changes in peripheral blood lymphocytes, monocytes, N classification, and plasma Epsteinâ€Barr virus DNA. Head and Neck, 2021, , .	2.0	10
67	Development and validation of a transcriptomics-based gene signature to predict distant metastasis and guide induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. European Journal of Cancer, 2022, 163, 26-34.	2.8	10
68	Symptomatic venous thromboembolism associated with peripherally inserted central catheters predicts a worse survival in nasopharyngeal carcinoma: results of a large cohort, propensity score–matched analysis. BMC Cancer, 2018, 18, 1297.	2.6	9
69	Establishment of a prognostic scoring model for regional recurrent nasopharyngeal carcinoma after neck dissection. Cancer Biology and Medicine, 2020, 17, 227-236.	3.0	9
70	Effect of Concurrent Chemoradiotherapy With Nedaplatin vs Cisplatin on the Long-term Outcomes of Survival and Toxic Effects Among Patients With Stage II to IVB Nasopharyngeal Carcinoma. JAMA Network Open, 2021, 4, e2138470.	5.9	9
71	The incidence and predictors of symptomatic venous thromboembolism associated with peripherally inserted central catheters in patients with nasopharyngeal carcinoma. OncoTargets and Therapy, 2018, Volume 11, 3119-3127.	2.0	8
72	Maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography compared with Epstein-Barr virus DNA as prognostic indicators in de novo metastatic nasopharyngeal carcinoma patients. BMC Cancer, 2019, 19, 908.	2.6	8

#	Article	IF	CITATIONS
73	Establishment and validation of two nomograms to predict the benefit of concurrent chemotherapy in stage Ilâ€Na nasopharyngeal carcinoma patients with different risk factors: Analysis based on a large cohort. Cancer Medicine, 2020, 9, 1661-1670.	2.8	8
74	Comparing three induction chemotherapy regimens for patients with locoregionally advanced nasopharyngeal carcinoma based on TNM stage and plasma Epstein–Barr virus DNA level. BMC Cancer, 2020, 20, 89.	2.6	8
75	Geriatric nutritional risk index as an independent prognostic factor in locally advanced nasopharyngeal carcinoma treated using radical concurrent chemoradiotherapy: a retrospective cohort study. Annals of Translational Medicine, 2021, 9, 532-532.	1.7	8
76	Nomogram for the prediction of primary distant metastasis of nasopharyngeal carcinoma to guide individualized application of FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2586-2598.	6.4	8
77	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on plasma Epstein–Barr virus DNA level after induction chemotherapy. Aging, 2020, 12, 4931-4944.	3.1	8
78	Optimizing the Treatment Pattern for De Novo Metastatic Nasopharyngeal Carcinoma Patients: A Large-Scale Retrospective Cohort Study. Frontiers in Oncology, 2020, 10, 543646.	2.8	7
79	Intensive Local Radiotherapy Is Associated With Better Local Control and Prolonged Survival in Bone-Metastatic Nasopharyngeal Carcinoma Patients. Frontiers in Oncology, 2020, 10, 378.	2.8	7
80	Impact of smoking on survival in nasopharyngeal carcinoma: A cohort study with 23,325 patients diagnosed from 1990 to 2016. Radiotherapy and Oncology, 2021, 162, 7-17.	0.6	7
81	Nomogram Predicting the Benefits of Adding Concurrent Chemotherapy to Intensity-Modulated Radiotherapy After Induction Chemotherapy in Stages II–IVb Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 539321.	2.8	6
82	Optimal multivariate method for Raman spectroscopy based diagnosis of nasopharyngeal carcinoma. Journal of Applied Physics, 2013, 114, 244702.	2.5	5
83	Induction chemotherapy followed by radiotherapy versus concurrent chemoradiotherapy in the treatment of different risk locoregionally advanced nasopharyngeal carcinoma. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592092821.	3.2	5
84	Low value of whole-body dual-modality [18f]fluorodeoxyglucose positron emission tomography/computed tomography in primary staging of stage l–II nasopharyngeal carcinoma: a nest case-control study. European Radiology, 2021, 31, 5222-5233.	4.5	5
85	Increased Angiogenin Expression Correlates With Radiation Resistance and Predicts Poor Survival for Patients With Nasopharyngeal Carcinoma. Frontiers in Pharmacology, 2021, 12, 627935.	3.5	5
86	Establishment and validation of a prognostic nomogram to predict early metastasis in nasopharyngeal carcinoma patients within six months after radiotherapy and to guide intensive treatment. Radiotherapy and Oncology, 2021, 162, 202-211.	0.6	5
87	Comparison of Gemcitabine Plus Cisplatin vs. Docetaxel Plus Fluorouracil Plus Cisplatin Palliative Chemotherapy for Metastatic Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 1295.	2.8	4
88	Lymph-node Epstein–Barr virus concentration in diagnosing cervical lymph-node metastasis in nasopharyngeal carcinoma. European Archives of Oto-Rhino-Laryngology, 2020, 277, 2513-2520.	1.6	4
89	Efficacy of Transnasal Endoscopic Fineâ€Needle Aspiration Biopsy in Diagnosing Submucosal Nasopharyngeal Carcinoma. Laryngoscope, 2021, 131, 1798-1804.	2.0	4
90	Do all patients with locoregionally advanced nasopharyngeal carcinoma benefit from the maintenance chemotherapy using S-1/capecitabine?. Oral Oncology, 2021, 122, 105539.	1.5	4

#	Article	IF	CITATIONS
91	Prognostic effect of pregnancy on young female patients with nasopharyngeal carcinoma: results from a matched cohort analysis. Oncotarget, 2016, 7, 21913-21921.	1.8	4
92	Percent change in apparent diffusion coefficient and plasma EBV DNA after induction chemotherapy identifies distinct prognostic response phenotypes in advanced nasopharyngeal carcinoma. BMC Cancer, 2021, 21, 1320.	2.6	4
93	The prognosis of neck residue nasopharyngeal carcinoma (NPC) patients: results from a case-cohort study. Journal of Cancer, 2018, 9, 1765-1772.	2.5	3
94	Identifying optimal candidates for induction chemotherapy among stage Il–IVa nasopharyngeal carcinoma based on pretreatment Epstein–Barr virus DNA and nodal maximal standard uptake values of [18 F]â€fluorodeoxyglucose positron emission tomography. Cancer Medicine, 2020, 9, 8852-8863.	2.8	3
95	Prognostic significance of a combined and controlled nutritional status score and EBV-DNA in patients with advanced nasopharyngeal carcinoma: a long-term follow-up study. Cancer Biology and Medicine, 2021, 19, 551-564.	3.0	3
96	Management of suboptimal response to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Re-induction therapy or direct to Radiotherapy? Radiotherapy and Oncology, 2021, 163, 185-191.	0.6	3
97	Induction or adjuvant chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in paediatric nasopharyngeal carcinoma in the IMRT era: A recursive partitioning risk stratification analysis based on EBV DNA. European Journal of Cancer, 2021, 159, 133-143.	2.8	3
98	Establishment and validation of a recursive partitioning analysis based prognostic model for guiding re-radiotherapy in locally recurrent nasopharyngeal carcinoma patients. Radiotherapy and Oncology, 2022, 168, 61-68.	0.6	3
99	Association of Treatment Advances With Survival Rates in Pediatric Patients With Nasopharyngeal Carcinoma in China, 1989-2020. JAMA Network Open, 2022, 5, e220173.	5.9	3
100	Role of zoledronic acid in nasopharyngeal carcinoma patients with bone-only metastasis at diagnosis. Oral Oncology, 2019, 97, 31-36.	1.5	2
101	Development and validation of a normal tissue complication probability model for acquired nasal cavity stenosis and atresia after radical radiotherapy for nasopharyngeal carcinoma. Radiotherapy and Oncology, 2021, 160, 9-17.	0.6	2
102	Impact of salvage radiotherapy on survival of patients with advanced locally recurrent nasopharyngeal carcinoma: Derivation and validation of a predictive model. Radiotherapy and Oncology, 2022, 167, 252-260.	0.6	2
103	Cost-Effectiveness analysis of combining plasma Epstein-Barr virus DNA testing and different surveillance imaging modalities for nasopharyngeal carcinoma patients in first remission. Oral Oncology, 2022, 128, 105851.	1.5	2
104	Longitudinal Trend of Health-Related Quality of Life During Concurrent Chemoradiotherapy and Survival in Patients With Stage Il–IVb Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 579292.	2.8	1
105	Management of firstâ€line palliative chemotherapy for postâ€treatment metastasis after gemcitabine plus cisplatin induction chemotherapy: Gemcitabine plus cisplatin and nonâ€gemcitabine plus cisplatin chemotherapy. Head and Neck, 2022, 44, 113-121.	2.0	1
106	Definitive radiation therapy and liver local therapy in de novo liver metastatic nasopharyngeal carcinoma: Large cohort study. Head and Neck, 2022, , .	2.0	1
107	Determining the suitability of definitive radiation therapy in patients with metastatic nasopharyngeal carcinoma based on PET/CT: a large cohort study. European Radiology, 2022, , 1.	4.5	1
108	Alpha-fetoprotein–producing recurrent nasopharyngeal carcinoma: A case report. SAGE Open Medical Case Reports, 2021, 9, 2050313X2110577.	0.3	0

#	Article	IF	CITATIONS
109	Construction and validation of a biochemical signature to predict the prognosis and the benefit of induction chemotherapy in patients with nasopharyngeal carcinoma American Journal of Cancer Research, 2022, 12, 1635-1647.	1.4	O