Jonathan O Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11033986/publications.pdf

Version: 2024-02-01

236925 361022 2,837 35 25 35 citations g-index h-index papers 37 37 37 4528 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology, 2013, 8, 61-68.	31.5	925
2	Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 2017, 147, 155-168.	11.4	199
3	Enabling individualized therapy through nanotechnology. Pharmacological Research, 2010, 62, 57-89.	7.1	188
4	Biodegradable Nanoneedles for Localized Delivery of Nanoparticles <i>in Vivo:</i> Exploring the Biointerface. ACS Nano, 2015, 9, 5500-5509.	14.6	171
5	Bromelain Surface Modification Increases the Diffusion of Silica Nanoparticles in the Tumor Extracellular Matrix. ACS Nano, 2014, 8, 9874-9883.	14.6	152
6	Rapamycin-Loaded Biomimetic Nanoparticles Reverse Vascular Inflammation. Circulation Research, 2020, 126, 25-37.	4.5	106
7	Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach. Advanced Materials, 2018, 30, e1702749.	21.0	100
8	Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics, 2018, 8, 1131-1145.	10.0	89
9	Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Scientific Reports, 2017, 7, 7991.	3.3	64
10	Engineering multi-stage nanovectors for controlled degradation andÂtunable release kinetics. Biomaterials, 2013, 34, 8469-8477.	11.4	62
11	Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomaterials Science, 2020, 8, 333-341.	5.4	59
12	Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23441-23449.	8.0	51
13	Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale, 2019, 11, 13576-13586.	5.6	51
14	Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles. Molecular Imaging, 2011, 10, 7290.2011.00011.	1.4	50
15	Cell source determines the immunological impact of biomimetic nanoparticles. Biomaterials, 2016, 82, 168-177.	11.4	50
16	Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Science Bulletin, 2012, 57, 3961-3971.	1.7	45
17	Short and Long Term, In Vitro and In Vivo Correlations of Cellular and Tissue Responses to Mesoporous Silicon Nanovectors. Small, 2013, 9, 1722-1733.	10.0	43
18	Multiscale Patterning of a Biomimetic Scaffold Integrated with Composite Microspheres. Small, 2014, 10, 3943-3953.	10.0	41

#	Article	IF	Citations
19	Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids and Surfaces B: Biointerfaces, 2015, 136, 694-703.	5.0	39
20	Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Scientific Reports, 2021, 11, 5107.	3.3	37
21	The Emerging Role of Nanotechnology in Cell and Organ Transplantation. Transplantation, 2016, 100, 1629-1638.	1.0	33
22	Degradation and biocompatibility of multistage nanovectors in physiological systems. Journal of Biomedical Materials Research - Part A, 2014, 102, 3540-3549.	4.0	32
23	Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Molecular Imaging, 2011, 10, 56-68.	1.4	32
24	The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation. Biomaterials, 2014, 35, 9824-9832.	11.4	29
25	Multistage Nanovectors Enhance the Delivery of Free and Encapsulated Drugs. Current Drug Targets, 2015, 16, 1582-1590.	2.1	28
26	Phosphoprotein-based biomarkers as predictors for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18401-18411.	7.1	25
27	Physicochemical properties affect the synthesis, controlled delivery, degradation and pharmacokinetics of inorganic nanoporous materials. Nanomedicine, 2015, 10, 3057-3075.	3.3	24
28	Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake. Small, 2016, 12, 1479-1488.	10.0	23
29	Evaluation of Cell Function Upon Nanovector Internalization. Small, 2013, 9, 1696-1702.	10.0	17
30	Bioinspired Extracellular Vesicles: Lessons Learned From Nature for Biomedicine and Bioengineering. Nanomaterials, 2020, 10, 2172.	4.1	17
31	Biomimetic cellular vectors for enhancing drug delivery to the lungs. Scientific Reports, 2020, 10, 172.	3.3	16
32	Trends towards Biomimicry in Theranostics. Nanomaterials, 2018, 8, 637.	4.1	14
33	Mesenchymal Stromal Cellâ€Mediated Treatment of Local and Systemic Inflammation through the Triggering of an Antiâ€Inflammatory Response. Advanced Functional Materials, 2021, 31, 2002997.	14.9	9
34	LDL-Based Lipid Nanoparticle Derived for Blood Plasma Accumulates Preferentially in Atherosclerotic Plaque. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794676.	4.1	3
35	Case Study: Application of LeukoLike Technology to Camouflage Nanoparticles from the Immune Recognition. Frontiers in Nanobiomedical Research, 2016, , 43-68.	0.1	0