
Catherine Muller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11033797/publications.pdf Version: 2024-02-01

CATHEDINE MILLED

#	Article	IF	CITATIONS
1	Adipocyte Extracellular Vesicles Decrease p16INK4A in Melanoma: An Additional Link between Obesity and Cancer. Journal of Investigative Dermatology, 2022, 142, 2488-2498.e8.	0.7	3
2	Periprostatic Adipose Tissue Displays a Chronic Hypoxic State that Limits Its Expandability. American Journal of Pathology, 2022, 192, 926-942.	3.8	9
3	The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer and Metastasis Reviews, 2022, 41, 589-605.	5.9	3
4	The Chemokine Receptor CCR3 Is Potentially Involved in the Homing of Prostate Cancer Cells to Bone: Implication of Bone-Marrow Adipocytes. International Journal of Molecular Sciences, 2021, 22, 1994.	4.1	17
5	Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO Journal, 2020, 39, e102525.	7.8	175
6	Drilling for Oil: Tumor-Surrounding Adipocytes Fueling Cancer. Trends in Cancer, 2020, 6, 593-604.	7.4	38
7	Periprostatic adipose tissue: A heavy player in prostate cancer progression. Current Opinion in Endocrine and Metabolic Research, 2020, 10, 29-35.	1.4	25
8	Human Bone Marrow Is Comprised of Adipocytes with Specific Lipid Metabolism. Cell Reports, 2020, 30, 949-958.e6.	6.4	67
9	Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer?. Current Medicinal Chemistry, 2020, 27, 3984-4001.	2.4	20
10	Periprostatic Adipose Tissue Favors Prostate Cancer Cell Invasion in an Obesity-Dependent Manner: Role of Oxidative Stress. Molecular Cancer Research, 2019, 17, 821-835.	3.4	76
11	Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault proteinÂ(MVP). Breast Cancer Research, 2019, 21, 7.	5.0	93
12	Obesity: an heavyweight player in breast cancer's chemoresistance. Oncotarget, 2019, 10, 3207-3208.	1.8	8
13	A new role for extracellular vesicles: how small vesicles can feed tumors' big appetite. Journal of Lipid Research, 2018, 59, 1793-1804.	4.2	35
14	Obesity and melanoma: could fat be fueling malignancy?. Pigment Cell and Melanoma Research, 2017, 30, 294-306.	3.3	50
15	Inflammation of mammary adipose tissue occurs in overweight and obese patients exhibiting early-stage breast cancer. Npj Breast Cancer, 2017, 3, 19.	5.2	59
16	Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight, 2017, 2, e87489.	5.0	304
17	Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth. Oncotarget, 2017, 8, 47239-47249.	1.8	13
18	The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget, 2017, 8, 57622-57641.	1.8	135

CATHERINE MULLER

#	Article	IF	CITATIONS
19	Adipocyte Exosomes Promote Melanoma Aggressiveness through Fatty Acid Oxidation: A Novel Mechanism Linking Obesity and Cancer. Cancer Research, 2016, 76, 4051-4057.	0.9	246
20	Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nature Communications, 2016, 7, 10230.	12.8	206
21	Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell and Melanoma Research, 2015, 28, 464-475.	3.3	121
22	Cancer-Associated Adipose Tissue Promotes Breast Cancer Progression by Paracrine Oncostatin M and Jak/STAT3 Signaling. Cancer Research, 2014, 74, 6806-6819.	0.9	105
23	Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer. Cancer Research, 2013, 73, 5657-5668.	0.9	361
24	Tumour-surrounding adipocytes are active players in breast cancer progression. Annales D'Endocrinologie, 2013, 74, 108-110.	1.4	25
25	Oncological Risk After Autologous Lipoaspirate Grafting in Breast Cancer Patients. Journal of Craniofacial Surgery, 2013, 24, 700-702.	0.7	3
26	Identification of the Hypoxia-inducible Factor 2α Nuclear Interactome in Melanoma Cells Reveals Master Proteins Involved in Melanoma Development. Molecular and Cellular Proteomics, 2013, 12, 736-748.	3.8	18
27	Unraveling the Local Influence of Tumor-Surrounding Adipose Tissue on Tumor Progression: Cellular and Molecular Actors Involved. , 2013, , 121-146.		7
28	Adipose tissue and breast epithelial cells: A dangerous dynamic duo in breast cancer. Cancer Letters, 2012, 324, 142-151.	7.2	173
29	Cancer-Associated Adipocytes Exhibit an Activated Phenotype and Contribute to Breast Cancer Invasion. Cancer Research, 2011, 71, 2455-2465.	0.9	831
30	Cancer-associated adipocytes promotes breast tumor radioresistance. Biochemical and Biophysical Research Communications, 2011, 411, 102-106.	2.1	107
31	Cathepsin-D, a Key Protease in Breast Cancer, Is Up-Regulated in Obese Mouse and Human Adipose Tissue, and Controls Adipogenesis. PLoS ONE, 2011, 6, e16452.	2.5	58
32	A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. Journal of Cell Science, 2011, 124, 1943-1951.	2.0	73
33	Loss of ATM positively regulates the expression of hypoxia inducible factor 1 (HIF-1) through oxidative stress: Role in the physiopathology of the disease. Cell Cycle, 2010, 9, 2886-2894.	2.6	40
34	Unraveling the Obesity and Breast Cancer Links: A Role for Cancer-Associated Adipocytes?. Endocrine Development, 2010, 19, 45-52.	1.3	90
35	LRP1 Receptor Controls Adipogenesis and Is Up-Regulated In Human and Mouse Obese Adipose Tissue. PLoS ONE, 2009, 4, e7422.	2.5	53
36	Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle, 2008, 7, 1047-1053.	2.6	39

CATHERINE MULLER

#	Article	IF	CITATIONS
37	Positive Regulation of DNA Double Strand Break Repair Activity during Differentiation of Long Life Span Cells: The Example of Adipogenesis. PLoS ONE, 2008, 3, e3345.	2.5	40
38	Transport of the leaderless protein Ku on the cell surface of activated monocytes regulates their migratory abilities. EMBO Reports, 2007, 8, 583-588.	4.5	14
39	The Loss of γH2AX Signal is a Marker of DNA Double Strand Breaks Repair Only at Low Levels of DNA Damage. Cell Cycle, 2006, 5, 1116-1122.	2.6	118
40	Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway. Blood, 2005, 105, 4776-4783.	1.4	92
41	The Double Life of the Ku Protein: Facing the DNA Breaks and the Extracellular Environment. Cell Cycle, 2005, 4, 438-441.	2.6	63
42	The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO Journal, 2004, 23, 3758-3768.	7.8	95
43	The Membrane-associated Form of the DNA Repair Protein Ku is Involved in Cell Adhesion to Fibronectin. Journal of Molecular Biology, 2004, 337, 503-511.	4.2	38
44	The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit. Oncogene, 2002, 21, 6471-6479.	5.9	50
45	Inhibition of Ku heterodimer DNA end binding activity during granulocytic differentiation of human promyelocytic cell lines. Oncogene, 2001, 20, 4373-4382.	5.9	21
46	Transfer of Ku86 RNA antisense decreases the radioresistance of human fibroblasts. Cancer Gene Therapy, 2000, 7, 339-346.	4.6	40
47	The activity of the DNA-dependent protein kinase (DNA-PK) complex is determinant in the cellular response to nitrogen mustards. Biochimie, 2000, 82, 25-28.	2.6	24
48	Cross-Resistance to Ionizing Radiation in a Murine Leukemic Cell Line Resistant to <i>cis</i> -Dichlorodiammineplatinum(II): Role of Ku Autoantigen. Molecular Pharmacology, 1999, 56, 141-146.	2.3	44
49	The DNA-dependent Protein Kinase Catalytic Activity Regulates DNA End Processing by Means of Ku Entry into DNA. Journal of Biological Chemistry, 1999, 274, 7848-7856.	3.4	90
50	Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie, 1999, 81, 117-125.	2.6	15
51	Human normal peripheral blood B-lymphocytes are deficient in DNA-dependent protein kinase activity due to the expression of a variant form of the Ku86 protein. Oncogene, 1998, 16, 1553-1560.	5.9	37
52	UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells. Nucleic Acids Research, 1998, 26, 1382-1389.	14.5	50
53	DNA-Dependent Protein Kinase Activity Correlates With Clinical and In Vitro Sensitivity of Chronic Lymphocytic Leukemia Lymphocytes to Nitrogen Mustards. Blood, 1998, 92, 2213-2219.	1.4	79
54	DNA-Dependent Protein Kinase Activity Correlates With Clinical and In Vitro Sensitivity of Chronic Lymphocytic Leukemia Lymphocytes to Nitrogen Mustards. Blood, 1998, 92, 2213-2219.	1.4	8

#	Article	IF	CITATIONS
55	Regulation of DNA-dependent protein kinase activity in leukemic cells. Oncogene, 1997, 15, 2343-2348.	5.9	42
56	Verapamil decreases P-glycoprotein expression in multidrug-resistant human leukemic cell lines. International Journal of Cancer, 1994, 56, 749-754.	5.1	79