Iftikhar Hussain Gul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11033487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. Journal of Electroanalytical Chemistry, 2022, 904, 115920.	3.8	72
2	Structure – properties relationships of graphene and spinel nickel ferrites based poly(vinylidene) Tj ETQq0 Materials Research Bulletin, 2022, 148, 111687.	0 0 rgBT /Ove 5.2	erlock 10 Tf 50 19
3	Binder-free pseudocapacitive nickel cobalt sulfide/MWCNTs hybrid electrode directly grown on nickel foam for high rate supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114898.	3.5	32
4	Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors. Biomass and Bioenergy, 2021, 144, 105909.	5.7	75
5	Transformation of wheat husk to 3D activated carbon/NiCo2S4 frameworks for high-rate asymmetrical supercapacitors. Journal of Energy Storage, 2021, 37, 102477.	8.1	29
6	Hierarchical MnNiCo ternary metal oxide/graphene nanoplatelets composites as high rated electrode material for supercapacitors. Ceramics International, 2021, 47, 17008-17014.	4.8	36
7	Direct chemical synthesis of interlaced NiMn-LDH nanosheets on LSTN perovskite decorated Ni foam for high-performance supercapacitors. Surface and Coatings Technology, 2021, 421, 127455.	4.8	17
8	One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting. Journal of Materials Science, 2021, 56, 18636-18649.	3.7	36
9	The complementary advanced characterization and electrochemical techniques for electrode materials for supercapacitors. Journal of Energy Storage, 2021, 44, 103370.	8.1	23
10	Graphene-ferrites interaction for enhanced EMI shielding effectiveness of hybrid polymer composites. Materials Research Express, 2020, 7, 016304.	1.6	22
11	ZIF-67 derived nitrogen doped CNTs decorated with sulfur and Ni(OH)2 as potential electrode material for high-performance supercapacitors. Electrochimica Acta, 2020, 364, 137147.	5.2	48
12	High-Performance Supercapacitor Electrode Obtained by Directly Bonding 2D Materials: Hierarchal MoS2 on Reduced Graphene Oxide. Frontiers in Materials, 2020, 7, .	2.4	35
13	Comprehensive study on structural, electrical, magnetic and photocatalytic degradation properties of Al3+ ions substituted nickel ferrites nanoparticles. Journal of Alloys and Compounds, 2020, 848, 155795.	5.5	47
14	Improved Electrical Properties Displayed by Mg2+-Substituted Cobalt Ferrite Nano Particles, Prepared Via Co-precipitation Route. Journal of Superconductivity and Novel Magnetism, 2020, 33, 3133-3144.	1.8	15
15	Binder-free heterostructured MWCNTs/Al2S3 decorated on NiCo foam as highly reversible cathode material for high-performance supercapacitors. Electrochimica Acta, 2020, 340, 135955.	5.2	37
16	Improved Performance of CuFe2O4/rGO Nanohybrid as an Anode Material for Lithium-ion Batteries Prepared Via Facile One-step Method. Current Nanoscience, 2019, 15, 420-429.	1.2	54
17	Investigating mechanical, dielectric, and electromagnetic interference shielding properties of polymer blends and three component hybrid composites based on polyvinyl alcohol, polyaniline, and few layer graphene. Polymer Composites, 2018, 39, 3686-3695.	4.6	26
18	Experimental and theoretical correlation of reinforcement trends in acrylonitrile butadiene styrene/singleâ€walled carbon nanotubes hybrid composites. Polymer Composites, 2018, 39, E902.	4.6	8

#	Article	IF	CITATIONS
19	Dielectric properties evaluation of NiFe 2 O 4 /MWCNTs nanohybrid for microwave applications prepared via novel one step synthesis. Ceramics International, 2017, 43, 4090-4095.	4.8	18
20	Infield superconducting properties of nano-sized Ag added Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10â~δ. Progress in Natural Science: Materials International, 2017, 27, 487-490.	4.4	1
21	Massive dielectric properties enhancement of MWCNTs/CoFe 2 O 4 nanohybrid for super capacitor applications. Journal of Magnetism and Magnetic Materials, 2017, 424, 382-387.	2.3	19
22	Enhancing dielectric and mechanical behaviors of hybrid polymer nanocomposites based on polystyrene, polyaniline and carbon nanotubes coated with polyaniline. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1500-1509.	3.8	22
23	Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application. Journal of Magnetism and Magnetic Materials, 2016, 405, 28-35.	2.3	87
24	Ce-Substituted Co0.5Ni0.5Fe2O4: Structural, morphological, electrical, and dielectric properties. Electronic Materials Letters, 2015, 11, 100-108.	2.2	20
25	Ultra low permittivity/loss CoFe2O4 and CoFe2O4–rGO nanohybrids by novel 1-hexanol assisted solvothermal process. Journal of Alloys and Compounds, 2015, 642, 78-82.	5.5	27
26	Synthesis, characterization and optical properties of in situ ZnFe2O4 functionalized rGO nano hybrids through modified solvothermal approach. Optical Materials, 2015, 45, 69-75.	3.6	19
27	Semiconductor-to-metallic flipping in a ZnFe 2 O 4 –graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy. Materials Characterization, 2015, 99, 254-265.	4.4	30
28	Synthesis, structural and electrical characterization of Sb3+ substituted spinel nickel ferrite (NiSbxFe2â^'xO4) nanoparticles by reverse micelle technique. Journal of Alloys and Compounds, 2011, 509, 5119-5126.	5.5	62
29	Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. Journal of Magnetism and Magnetic Materials, 2011, 323, 259-263.	2.3	154
30	Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. Journal of Magnetism and Magnetic Materials, 2010, 322, 1720-1726.	2.3	203
31	Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. Journal of Alloys and Compounds, 2009, 487, 341-345.	5.5	169
32	Structural, electrical and magnetic characterization of Ni–Mg spinel ferrites. Journal of Alloys and Compounds, 2009, 487, 739-743.	5.5	112
33	Prediction of thermal conductivity of granite rocks from porosity and density data at normal temperature and pressure:in situthermal conductivity measurements. Journal Physics D: Applied Physics, 2004, 37, 3396-3401.	2.8	18
34	Thermal transport properties of granites in the temperature range 253–333ÂK. Journal Physics D: Applied Physics, 2004, 37, 1405-1409.	2.8	10
35	Chemical Composition, Density, Specific Gravity, Apparent Porosity, and Thermal Transport Properties of Volcanic Rocks in the Temperature Range 253 to 333 K. Journal of Chemical & Engineering Data, 2003, 48, 1310-1314.	1.9	16
36	Increased dielectric properties of ZnFe2O4/rGO nanohybrid via thermo-chemical route. Journal of the Australian Ceramic Society, 0, , .	1.9	0