
James Sneyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103348/publications.pdf Version: 2024-02-01

IMMES SNEVD

#	Article	IF	CITATIONS
1	Process-Oriented Geometric Singular Perturbation Theory and Calcium Dynamics. SIAM Journal on Applied Dynamical Systems, 2022, 21, 982-1029.	1.6	2
2	A Mathematical Model of Salivary Gland Duct Cells. Bulletin of Mathematical Biology, 2022, 84, .	1.9	3
3	Calcium Dynamics and Water Transport in Salivary Acinar Cells. Bulletin of Mathematical Biology, 2021, 83, 31.	1.9	7
4	Omnitemporal choreographies of all five STIM/Orai and IP3Rs underlie the complexity of mammalian Ca2+ signaling. Cell Reports, 2021, 34, 108760.	6.4	57
5	A Tale of two receptors. Journal of Theoretical Biology, 2021, 518, 110629.	1.7	4
6	Highly localized intracellular Ca2+ signals promote optimal salivary gland fluid secretion. ELife, 2021, 10, .	6.0	16
7	Speed of traveling waves for monotone reaction–diffusion systems as a function of diffusion coefficients. Physica D: Nonlinear Phenomena, 2021, 424, 132940.	2.8	1
8	The Mitochondrial Ca2+ uniporter is a central regulator of interorganellar Ca2+ transfer and NFAT activation. Journal of Biological Chemistry, 2021, 297, 101174.	3.4	30
9	The native ORAI channel trio underlies the diversity of Ca2+ signaling events. Nature Communications, 2020, 11, 2444.	12.8	90
10	A Multicellular Model of Primary Saliva Secretion in the Parotid Gland. Bulletin of Mathematical Biology, 2020, 82, 38.	1.9	5
11	Dual mechanisms of Ca2+ oscillations in hepatocytes. Journal of Theoretical Biology, 2020, 503, 110390.	1.7	10
12	IP3-Dependent Ca2+ Oscillations Switch into a Dual Oscillator Mechanism in the Presence of PLC-Linked Hormones. IScience, 2020, 23, 101062.	4.1	14
13	A Model of \$\$hbox {Ca}^{2+}\$\$ Dynamics in an Accurate Reconstruction of Parotid Acinar Cells. Bulletin of Mathematical Biology, 2019, 81, 1394-1426.	1.9	11
14	Data-Driven Modelling of the Inositol Trisphosphate ReceptorÂ(\$\$ext {IP}_3ext {R}\$\$) and its Role in Calcium-Induced Calcium ReleaseÂ(CICR). Springer Series in Computational Neuroscience, 2019, , 39-68.	0.3	2
15	A Mathematical Model of Fluid Transport in an Accurate Reconstruction of Parotid Acinar Cells. Bulletin of Mathematical Biology, 2019, 81, 699-721.	1.9	9
16	New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 613-621.	2.8	9
17	A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion. Bulletin of Mathematical Biology, 2018, 80, 255-282.	1.9	13
18	Computational Architecture of the Granular Layer of Cerebellum-Like Structures. Cerebellum, 2017, 16, 15-25.	2.5	8

#	Article	IF	CITATIONS
19	Modeling calcium waves in an anatomically accurate three-dimensional parotid acinar cell. Journal of Theoretical Biology, 2017, 419, 383-393.	1.7	9
20	On the dynamical structure of calcium oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1456-1461.	7.1	81
21	Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1. American Journal of Physiology - Renal Physiology, 2017, 312, G153-G163.	3.4	6
22	Mapping Interpuff Interval Distribution to the Properties of Inositol Trisphosphate Receptors. Biophysical Journal, 2017, 112, 2138-2146.	0.5	8
23	Recent developments in models of calcium signalling. Current Opinion in Systems Biology, 2017, 3, 15-22.	2.6	17
24	The relative contributions of storeâ€operated and voltageâ€gated Ca ²⁺ channels to the control of Ca ²⁺ oscillations in airway smooth muscle. Journal of Physiology, 2017, 595, 3129-3141.	2.9	19
25	Sequential Pattern Formation in the Cerebellar Granular Layer. Cerebellum, 2017, 16, 438-449.	2.5	4
26	A mathematical model of the effects of anoctamin-1 loss on intestinal slow wave entrainment. , 2017, 2017, 2017, 2688-2691.		3
27	A mathematical model of calcium dynamics in HSY cells. PLoS Computational Biology, 2017, 13, e1005275.	3.2	18
28	Some Background Physiology. Interdisciplinary Applied Mathematics, 2016, , 3-27.	0.3	0
29	Hierarchical and Stochastic Modelling. Interdisciplinary Applied Mathematics, 2016, , 163-205.	0.3	1
30	Nonlinear Dynamics of Calcium. Interdisciplinary Applied Mathematics, 2016, , 207-242.	0.3	1
31	Nonexcitable Cells. Interdisciplinary Applied Mathematics, 2016, , 245-294.	0.3	0
32	Neurons and Other Excitable Cells. Interdisciplinary Applied Mathematics, 2016, , 337-385.	0.3	2
33	Models of Calcium Signalling. Interdisciplinary Applied Mathematics, 2016, , .	0.3	90
34	The Calcium Toolbox. Interdisciplinary Applied Mathematics, 2016, , 29-96.	0.3	2
35	Basic Modelling Principles: Deterministic Models. Interdisciplinary Applied Mathematics, 2016, , 97-161.	0.3	2
36	Effects of quasi-steady-state reduction on biophysical models with oscillations. Journal of Theoretical Biology, 2016, 393, 16-31.	1.7	11

#	Article	IF	CITATIONS
37	A spatial model of fluid recycling in the airways of the lung. Journal of Theoretical Biology, 2015, 382, 198-215.	1.7	10
38	Ryanodine Receptor Sensitization Results in Abnormal Calcium Signaling in Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 703-711.	2.9	19
39	A Computational Model of the Dendron of the GnRH Neuron. Bulletin of Mathematical Biology, 2015, 77, 904-926.	1.9	10
40	The Nonlinear Dynamics of Calcium. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, 2015, , 53-107.	0.5	0
41	A Deterministic Model Predicts the Properties of Stochastic Calcium Oscillations in Airway Smooth Muscle Cells. PLoS Computational Biology, 2014, 10, e1003783.	3.2	54
42	A "mix-and-match―approach to designing Ca ²⁺ microdomains at membrane-contact sites. Communicative and Integrative Biology, 2014, 7, e29586.	1.4	5
43	Curvature Dependence of Propagating Velocity for a Simplified Calcium Model. SIAM Journal on Applied Mathematics, 2014, 74, 1442-1462.	1.8	3
44	Statistical analysis of modal gating in ion channels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140030.	2.1	14
45	Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells. Journal of Mathematical Analysis and Applications, 2014, 419, 28-47.	1.0	13
46	Reply to Response to â€~What Do Aquaporin Knockout Studies Tell Us about Fluid Transport in Epithelia?' Maclaren OJ, Sneyd J, Crampin EJ (2013) J Membr Biol 246:297–305. Journal of Membrane Biology, 2014, 247, 289-290.	2.1	0
47	A Biophysical Model of Adaptive Noise Filtering in the Shark Brain. Bulletin of Mathematical Biology, 2014, 76, 455-475.	1.9	3
48	Multiscale modelling of saliva secretion. Mathematical Biosciences, 2014, 257, 69-79.	1.9	19
49	Modelling the transition from simple to complex Ca2+oscillations in pancreatic acinar cells. Journal of Biosciences, 2014, 39, 463-484.	1.1	34
50	Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal. American Journal of Physiology - Renal Physiology, 2014, 306, G711-G727.	3.4	39
51	Development of a formula for estimating plasma free cortisol concentration from a measured total cortisol concentration when elastase-cleaved and intact corticosteroid binding globulin coexist. Journal of Steroid Biochemistry and Molecular Biology, 2014, 141, 16-25.	2.5	23
52	A computational model of lysosome-ER Ca2+ microdomains. Journal of Cell Science, 2014, 127, 2934-43.	2.0	56
53	Mathematical Modeling of Calcium Dynamics in Airway Smooth Muscle Cells. , 2014, , 341-357.		1
54	What Do Aquaporin Knockout Studies Tell Us about Fluid Transport in Epithelia?. Journal of Membrane Biology, 2013, 246, 297-305.	2.1	18

#	Article	IF	CITATIONS
55	A Stochastic Model of Calcium Puffs Based on Single-Channel Data. Biophysical Journal, 2013, 105, 1133-1142.	0.5	52
56	Regulation of Electrical Bursting in a Spatiotemporal Model of a GnRH Neuron. Bulletin of Mathematical Biology, 2013, 75, 1941-1960.	1.9	11
57	The role of enzyme compartmentalization on the regulation of steroid synthesis. Journal of Theoretical Biology, 2013, 332, 52-64.	1.7	9
58	Activation of Store-Operated Calcium Entry in Airway Smooth Muscle Cells: Insight from a Mathematical Model. PLoS ONE, 2013, 8, e69598.	2.5	42
59	A Multi-Scale Approach to Airway Hyperresponsiveness: From Molecule to Organ. Frontiers in Physiology, 2012, 3, 191.	2.8	39
60	A quantitative analysis of electrolyte exchange in the salivary duct. American Journal of Physiology - Renal Physiology, 2012, 303, G1153-G1163.	3.4	20
61	Traveling Waves in a Simplified Model of Calcium Dynamics. SIAM Journal on Applied Dynamical Systems, 2012, 11, 1149-1199.	1.6	18
62	MCMC Can Detect Nonidentifiable Models. Biophysical Journal, 2012, 103, 2275-2286.	0.5	80
63	Variation in 3β-hydroxysteroid dehydrogenase activity and in pregnenolone supply rate can paradoxically alter androstenedione synthesis. Journal of Steroid Biochemistry and Molecular Biology, 2012, 128, 12-20.	2.5	14
64	A Park/Drive Model for the Inositol-Trisphosphate Receptor (IPR). Biophysical Journal, 2012, 102, 110a.	0.5	0
65	A Kinetic Model for Type I and II IP3R Accounting for Mode Changes. Biophysical Journal, 2012, 103, 658-668.	0.5	59
66	Reconciling Aquaporin Knockout Studies with Epithelial Permeability: Insights from Modelling the Salivary Gland. Biophysical Journal, 2012, 102, 651a-652a.	0.5	0
67	Development of a Three-Dimensional Heat Transfer Model for Continuous Annealing of Steel Strip. Industrial & Engineering Chemistry Research, 2012, 51, 1790-1795.	3.7	5
68	The Importance of Synergy between Deep Inspirations and Fluidization in Reversing Airway Closure. PLoS ONE, 2012, 7, e48552.	2.5	7
69	Quantifying parenchymal tethering in a finite element simulation of a human lung slice under bronchoconstriction. Respiratory Physiology and Neurobiology, 2012, 183, 85-90.	1.6	10
70	Modelling the effects of calcium waves and oscillations on saliva secretion. Journal of Theoretical Biology, 2012, 305, 45-53.	1.7	20
71	Efficiency of Primary Saliva Secretion: An Analysis of Parameter Dependence in Dynamic Single-Cell and Acinus Models, with Application to Aquaporin Knockout Studies. Journal of Membrane Biology, 2012, 245, 29-50.	2.1	14
72	How does the ryanodine receptor in the ventricular myocyte wake up: by a single or by multiple open L-type Ca2+ channels?. European Biophysics Journal, 2012, 41, 27-39.	2.2	11

#	Article	IF	CITATIONS
73	Gap junctions and excitation patterns in continuum models of islets. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 1969-1990.	0.9	2
74	Traveling Waves in the Buffered FitzHugh–Nagumo Model. SIAM Journal on Applied Mathematics, 2011, 71, 1606-1636.	1.8	20
75	MCMC Estimation of Markov Models for Ion Channels. Biophysical Journal, 2011, 100, 1919-1929.	0.5	54
76	Deep Inspirations And Bronchial Challenge In A Predictive Multiscale Model Of The Human Lung. , 2011, , .		0
77	A minimalist model of calcium-voltage coupling in GnRH cells. Journal of Physics: Conference Series, 2011, 285, 012040.	0.4	0
78	Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics. Journal of Nonlinear Science, 2011, 21, 639-683.	2.1	54
79	Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales. Journal of Mathematical Neuroscience, 2011, 1, 9.	2.4	13
80	A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. Journal of Theoretical Biology, 2011, 276, 22-34.	1.7	30
81	Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L121-L131.	2.9	28
82	A dynamic model of saliva secretion. Journal of Theoretical Biology, 2010, 266, 625-640.	1.7	43
83	A biomechanical model of agonist-initiated contraction in the asthmatic airway. Respiratory Physiology and Neurobiology, 2010, 170, 44-58.	1.6	37
84	A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. Journal of Theoretical Biology, 2010, 266, 614-624.	1.7	70
85	Spatio-temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. Journal of Theoretical Biology, 2010, 267, 137-152.	1.7	22
86	Development and validation of models for annealing furnace control from heat transfer fundamentals. Computers and Chemical Engineering, 2010, 34, 1849-1853.	3.8	29
87	Two Slow Calcium-Activated Afterhyperpolarization Currents Control Burst Firing Dynamics in Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2010, 30, 6214-6224.	3.6	87
88	Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos, 2010, 20, 045104.	2.5	29
89	A Mathematical Analysis of Agonist- and KCl-Induced Ca2+ Oscillations in Mouse Airway Smooth Muscle Cells. Biophysical Journal, 2010, 98, 1170-1181.	0.5	33
90	A Continuous-Binding Cross-Linker Model for Passive Airway Smooth Muscle. Biophysical Journal, 2010, 99, 3164-3171.	0.5	22

#	Article	IF	CITATIONS
91	Inositol trisphosphate receptor and ion channel models based on single-channel data. Chaos, 2009, 19, 037104.	2.5	11
92	Transient oscillatory force-length behavior of activated airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L362-L372.	2.9	37
93	Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors. Journal of Theoretical Biology, 2009, 257, 460-474.	1.7	29
94	A Kinetic Model of the Inositol Trisphosphate Receptor Based on Single-Channel Data. Biophysical Journal, 2009, 96, 4053-4062.	0.5	39
95	A Mathematical Analysis of Obstructed Diffusion within Skeletal Muscle. Biophysical Journal, 2009, 96, 4764-4778.	0.5	33
96	Modeling of the Modulation by Buffers of Ca2+ Release through Clusters of IP3 Receptors. Biophysical Journal, 2009, 97, 992-1002.	0.5	25
97	Modeling the Response of Airway Smooth Muscle to Cyclic Loading. Biophysical Journal, 2009, 96, 619a.	0.5	0
98	A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle. Biophysical Journal, 2008, 94, 2053-2064.	0.5	72
99	Depolarization-induced Calcium Responses in Sympathetic Neurons: Relative Contributions from Ca2+ Entry, Extrusion, ER/Mitochondrial Ca2+ Uptake and Release, and Ca2+ Buffering. Journal of General Physiology, 2007, 129, 29-56.	1.9	30
100	When Shil'nikov Meets Hopf in Excitable Systems. SIAM Journal on Applied Dynamical Systems, 2007, 6, 663-693.	1.6	54
101	A mathematical model of fluid secretion from a parotid acinar cell. Journal of Theoretical Biology, 2007, 248, 64-80.	1.7	39
102	Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system. Journal of Mathematical Biology, 2007, 54, 513-553.	1.9	29
103	Traveling waves in the discrete fast buffered bistable system. Journal of Mathematical Biology, 2007, 55, 605-652.	1.9	1
104	Modelling calcium microdomains using homogenisation. Journal of Theoretical Biology, 2007, 247, 623-644.	1.7	28
105	Homogenization of the Cell Cytoplasm: The Calcium Bidomain Equations. Multiscale Modeling and Simulation, 2006, 5, 1045-1062.	1.6	43
106	A Buffering SERCA Pump in Models of Calcium Dynamics. Biophysical Journal, 2006, 91, 151-163.	0.5	80
107	A bifurcation analysis of calcium buffering. Journal of Theoretical Biology, 2006, 242, 1-15.	1.7	19
108	Dynamical Probing of the Mechanisms Underlying Calcium Oscillations. Journal of Nonlinear Science, 2006, 16, 483-506.	2.1	18

#	Article	IF	CITATIONS
109	Calcium Oscillations and Waves Generated by Multiple Release Mechanisms in Pancreatic Acinar Cells. Bulletin of Mathematical Biology, 2006, 68, 2205-2231.	1.9	9
110	A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1675-1680.	7.1	154
111	Mathematical modelling of prolactin–receptor interaction and the corollary for prolactin receptor gene expression in skin. Journal of Theoretical Biology, 2005, 234, 289-298.	1.7	4
112	Complex oscillations and waves of calcium in pancreatic acinar cells. Physica D: Nonlinear Phenomena, 2005, 200, 303-324.	2.8	17
113	Models of the inositol trisphosphate receptor. Progress in Biophysics and Molecular Biology, 2005, 89, 207-245.	2.9	65
114	Existence and Stability of Traveling Waves in Buffered Systems. SIAM Journal on Applied Mathematics, 2005, 66, 237-265.	1.8	36
115	Calcium Oscillations and Membrane Transport: The Importance of Two Time Scales. Multiscale Modeling and Simulation, 2005, 3, 245-264.	1.6	8
116	Modeling IP3-Dependent Calcium Dynamics in Non-Excitable Cells. Lecture Notes in Mathematics, 2005, , 15-61.	0.2	4
117	Calcium Oscillations in a Triplet of Pancreatic Acinar Cells. Biophysical Journal, 2005, 88, 1535-1551.	0.5	24
118	A comparison of three models of the inositol trisphosphate receptor. Progress in Biophysics and Molecular Biology, 2004, 85, 121-140.	2.9	37
119	Control of calcium oscillations by membrane fluxes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1392-1396.	7.1	125
120	A Model of Calcium Waves in Pancreatic and Parotid Acinar Cells. Biophysical Journal, 2003, 85, 1392-1405.	0.5	95
121	A dynamic model of the type-2 inositol trisphosphate receptor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2398-2403.	7.1	109
122	Cytosolic Ca2+and Ca2+â€activated Clâ^'current dynamics: insights from two functionally distinct mouse exocrine cells. Journal of Physiology, 2002, 540, 469-484.	2.9	75
123	A bifurcation analysis of two coupled calcium oscillators. Chaos, 2001, 11, 237.	2.5	24
124	Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis. Physica D: Nonlinear Phenomena, 2000, 145, 158-179.	2.8	50
125	Modulation of InsP3 receptor properties by phosphorylation: targeting of PKA to InsP3 receptors shapes oscillatory calcium signals in pancreatic acinar cells. Journal of Korean Medical Science, 2000, 15, S55.	2.5	5
126	Targeted Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors Selectively Inhibits Localized Ca2+ Release and Shapes Oscillatory Ca2+ Signals. Journal of Biological Chemistry, 2000, 275, 33704-33711.	3.4	81

#	Article	IF	CITATIONS
127	Agonist-dependent Phosphorylation of the Inositol 1,4,5-Trisphosphate Receptor. Journal of General Physiology, 1999, 113, 851-872.	1.9	97
128	Intercellular Spiral Waves of Calcium. Journal of Theoretical Biology, 1998, 191, 299-308.	1.7	42
129	Analysis of a Reduced Model of Cortiocotroph Action Potentials. Journal of Theoretical Biology, 1998, 192, 319-339.	1.7	31
130	Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate. Biophysical Chemistry, 1998, 72, 101-109.	2.8	51
131	Traveling Waves in Buffered Systems: Applications to Calcium Waves. SIAM Journal on Applied Mathematics, 1998, 58, 1178-1192.	1.8	73
132	A Simple Method for High Temporal Resolution Calcium Imaging with Dual Excitation Dyes. Biophysical Journal, 1998, 75, 2025-2029.	0.5	19
133	On the Propagation of Calcium Waves in an Inhomogeneous Medium. SIAM Journal on Applied Mathematics, 1997, 57, 73-94.	1.8	51
134	On a Model Mechanism for the Spatial Patterning of Teeth Primordia in the Alligator. Journal of Theoretical Biology, 1996, 180, 287-296.	1.7	60
135	Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB Journal, 1995, 9, 1463-1472.	0.5	181
136	1 Intracellular calcium waves. Advances in Second Messenger and Phosphoprotein Research, 1995, 30, 1-24.	4.5	25
137	A profile analysis of propagating calcium waves. Cell Calcium, 1994, 15, 289-296.	2.4	9
138	Population Dynamics of <i>Varroa Jacobsoni:</i> A Model and a Review. Bee World, 1994, 75, 5-28.	0.8	138
139	A Model for the Spatial Patterning of Teeth Primordia in the Alligator: Initiation of the Dental Determinant. Journal of Theoretical Biology, 1993, 165, 633-658.	1.7	9
140	Curvature dependence of a model for calcium wave propagation. Physica D: Nonlinear Phenomena, 1993, 65, 365-372.	2.8	19
141	Calcium wave propagation by calcium-induced calcium release: An unusual excitable system. Bulletin of Mathematical Biology, 1993, 55, 315-344.	1.9	50
142	Stress Distributions in Vascular Aneurysms: Factors Affecting Risk of Aneurysm Rupture. Journal of Surgical Research, 1993, 55, 155-161.	1.6	88
143	On a simplified model for pattern formation in honey bee colonies. Journal of Mathematical Biology, 1992, 30, 281-306.	1.9	15
144	A model of collective nectar source selection by honey bees: Self-organization through simple rules. Journal of Theoretical Biology, 1991, 149, 547-571.	1.7	229

#	Article	IF	CITATIONS
145	Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 1991, 28, 277.	1.4	467
146	A mathematical model of self-organized pattern formation on the combs of honeybee colonies. Journal of Theoretical Biology, 1990, 147, 553-571.	1.7	81
147	Computation of Geodesic Trajectories on Tubular Surfaces. SIAM Journal on Scientific and Statistical Computing, 1990, 11, 230-241.	1.5	9
148	Phototransduction in cones: An inverse problem in enzyme kinetics. Bulletin of Mathematical Biology, 1989, 51, 749-784.	1.9	136
149	IP ₃ -Dependent Ca ²⁺ Oscillations Switch into a Dual Oscillator Mechanism in the Presence of PLC-Linked Hormones. SSRN Electronic Journal, 0, , .	0.4	0