Saad A El-Sayed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11030397/publications.pdf Version: 2024-02-01

SAAD A FL-SAVED

#	Article	IF	CITATIONS
1	Kinetics, thermodynamics, and combustion characteristics of Poinciana pods using TG/DTG/DTA techniques. Biomass Conversion and Biorefinery, 2023, 13, 11583-11607.	4.6	10
2	Thermal explosion of a reactive gas mixture at constant pressure for non-uniform and uniform temperature systems. Defence Technology, 2021, , .	4.2	0
3	Thermal explosion characteristics of a combustible gas containing fuel droplets. International Journal of Spray and Combustion Dynamics, 2021, 13, 124-145.	1.0	0
4	Analytical and numerical solutions of sodium particle ignition based on the thermal explosion theory with different forms of reaction rates and variable thermal conductivity. Annals of Nuclear Energy, 2020, 141, 107372.	1.8	2
5	Thermal pyrolysis and kinetic parameter determination of mango leaves using common and new proposed parallel kinetic models. RSC Advances, 2020, 10, 18160-18179.	3.6	30
6	Simulation of combustion of sesame and broad bean stalks in the freeboard zone inside a pilot-scale bubbling fluidized bed combustor using CFD modeling. Applied Thermal Engineering, 2019, 158, 113767.	6.0	8
7	Experimental Investigation of Combustion Characteristics and Emissions for a Pilot-Scale Bubbling Fluidized Bed Combustor Fueled by Biomass Chips of Sesame and Broad Bean Stalks. Combustion Science and Technology, 2019, 191, 2243-2270.	2.3	3
8	Thermal decomposition and combustion characteristics of biomass materials using TG/DTG at different high heating rates and sizes in the air. Environmental Progress and Sustainable Energy, 2019, 38, 13124.	2.3	18
9	Combustion and Emission Characteristics of Egyptian Sugarcane Bagasse and Cotton Stalks Powders in a Bubbling Fluidized Bed Combustor. Waste and Biomass Valorization, 2019, 10, 2015-2035.	3.4	9
10	Sesame and Broad Bean Stalks: Mixing Characteristics of Chips as a Biomass Fuel for Bubbling Fluidized Bed Combustor. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	3
11	lgnition of a Pyrolysis Wooden Particle Based on the Thermal Explosion Theory. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2018, 42, 317-327.	1.3	0
12	Self-ignition of dust cloud in a hot gas. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	2
13	Sesame and broad bean plant residue: thermogravimetric investigation and devolatilization kinetics analysis during the decomposition in an inert atmosphere. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	6
14	Thermoâ€physical and kinetics parameters determination and gases emissions of selfâ€ignition of sieved rice husk of different sizes on a hot plate. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 536-550.	1.5	4
15	Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels, 2015, 6, 157-170.	2.4	41
16	Kinetic Parameters Determination of Biomass Pyrolysis Fuels Using TGA and DTA Techniques. Waste and Biomass Valorization, 2015, 6, 401-415.	3.4	88
17	Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion and Management, 2014, 85, 165-172.	9.2	225
18	Analysis of Grain Size Statistic and Particle Size Distribution of Biomass Powders. Waste and Biomass Valorization, 2014, 5, 1005-1018.	3.4	16

SAAD A EL-SAYED

#	Article	IF	CITATIONS
19	lgnition characteristics, conditions of criticality and disappearance of criticality of cumene hydroperoxide reaction by modeling approach. Chemical Engineering Research and Design, 2009, 87, 293-299.	5.6	1
20	Critical and Transition Conditions for Ignition of a Carbon Particles Dust Cloud in an Adiabatic Confined Vessel. Combustion Science and Technology, 2008, 180, 1572-1587.	2.3	2
21	EFFECT OF DEGREE OF REACTION ON CRITICAL CONDITIONS AND TIMES TO IGNITION OF A GAS MIXTURE EXPLOSION. Combustion Science and Technology, 2006, 178, 1055-1086.	2.3	1
22	ADIABATIC THERMAL EXPLOSION OF A GAS–SOLID MIXTURE. Combustion Science and Technology, 2004, 176, 237-256.	2.3	6
23	Explosion characteristics of autocatalytic reaction. Combustion and Flame, 2003, 133, 375-378.	5.2	2
24	Thermal explosion of autocatalytic reaction. Journal of Loss Prevention in the Process Industries, 2003, 16, 249-257.	3.3	4
25	Critical and transition conditions of gaseous explosion. Journal of Loss Prevention in the Process Industries, 2003, 16, 281-288.	3.3	2
26	The criteria of criticality and transition conditions of gas explosion. Combustion Science and Technology, 2003, 175, 225-251.	2.3	1
27	Smoldering combustion of dust layer on hot surface. Journal of Loss Prevention in the Process Industries, 2000, 13, 509-517.	3.3	11
28	Accounting for reactant consumption in the thermal explosion problem. part IV. numerical solution of the arrhenius problem. Combustion and Flame, 1999, 117, 422-428.	5.2	17
29	Accounting for Reactant Consumption in the Thermal Explosion Problem III. Criticality Conditions for the Arrhenius Problem. Combustion and Flame, 1998, 113, 212-223.	5.2	26
30	Organic Dust Ignition in the High Temperature Flow Behind a Shock Wave. Chemical Engineering Research and Design, 1997, 75, 14-18.	5.6	2
31	Experimental study of organic dust ignition behind shock waves. Journal of Loss Prevention in the Process Industries, 1996, 9, 249-253.	3.3	2
32	Ignition characteristics of metal particles in thermal explosion theory. Journal of Loss Prevention in the Process Industries, 1996, 9, 393-400.	3.3	4
33	Ignition and transition conditions for inflammation and extinction for a first-order heterogeneous reaction. Journal of Loss Prevention in the Process Industries, 1995, 8, 237-243.	3.3	2