Won-Jae Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11029529/publications.pdf

Version: 2024-02-01

30	2,238 citations	687363 13 h-index	477307 29 g-index
papers	citations	II-IIIdex	g-maex
30 all docs	30 docs citations	30 times ranked	4375 citing authors

#	Article	IF	Citations
1	Synthetic Topological Nodal Phase in Bilayer Resonant Gratings. Physical Review Letters, 2022, 128, 053002.	7.8	6
2	Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 2020, 370, 459-463.	12.6	212
3	Unraveling the Structural and Electronic Properties of Graphene/Ge(110). Journal of Physical Chemistry Letters, 2018, 9, 7059-7063.	4.6	13
4	Realization of continuous Zachariasen carbon monolayer. Science Advances, 2017, 3, e1601821.	10.3	46
5	Optical Gain in MoS ₂ <i>via</i> Coupling with Nanostructured Substrate: Fabry–Perot Interference and Plasmonic Excitation. ACS Nano, 2016, 10, 8192-8198.	14.6	69
6	Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu. Nanotechnology, 2015, 26, 455304.	2.6	6
7	Carbon out-diffusion mechanism for direct graphene growth on a silicon surface. Acta Materialia, 2015, 96, 18-23.	7.9	8
8	Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 2014, 344, 286-289.	12.6	831
9	Conjugated dendrimers with electrical bistability for organic memory application. Macromolecular Research, 2009, 17, 203-206.	2.4	0
10	High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photonics, 2009, 3, 341-345.	31.4	505
11	Temperature Dependence on the Grating Formation in a Low-Tg Polymeric Photorefractive Composite. Journal of Physical Chemistry B, 2009, 113, 1592-1597.	2.6	16
12	Embossed structure embedded organic memory device. Thin Solid Films, 2008, 516, 3133-3137.	1.8	6
13	Gold nanoparticles passivated with π-conjugated dendrons and their electrical bistability. Synthetic Metals, 2008, 158, 359-363.	3.9	19
14	Ferrocene-cored-conjugated dendrimer with electrical bistability. Synthetic Metals, 2007, 157, 640-643.	3.9	12
15	Synthesis and Nonvolatile Memory Behavior of Redox-Active Conjugated Polymer-Containing Ferrocene. Journal of the American Chemical Society, 2007, 129, 9842-9843.	13.7	154
16	Study on Threshold Behavior of Operation Voltage in Metal Filament-Based Polymer Memory. Journal of Physical Chemistry B, 2007, 111, 7756-7760.	2.6	72
17	Metal Filament Growth in Electrically Conductive Polymers for Nonvolatile Memory Application. Journal of Physical Chemistry B, 2006, 110, 23812-23816.	2.6	103
18	Electronically controlled nonvolatile memory device using PAMAM dendrimer. Organic Electronics, 2006, 7, 600-606.	2.6	9

#	Article	IF	CITATIONS
19	Application to Optically Controlled Spatial Light Modulator Using Organic Photorefractive Composite. Polymer Journal, 2004, 36, 674-678.	2.7	6
20	Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications. Macromolecular Research, 2003, 11, 431-436.	2.4	18
21	Applications of polymeric photorefractive material to reversible data storage and information processing. Journal of Applied Polymer Science, 2003, 89, 368-372.	2.6	13
22	TEMPERATURE DEPENDENCE ON THE GRATING FORMATION IN PHOTOREFRACTIVE POLYMERIC COMPOSITE. Molecular Crystals and Liquid Crystals, 2003, 406, 69-75.	0.9	2
23	Dependence of the Bragg condition on an external electric field for a polymeric photorefractive material. Applied Optics, 2003, 42, 3271.	2.1	2
24	Simple method for determining the gain coefficient of a photorefractive polymer film. Optics Letters, 2003, 28, 1254.	3.3	1
25	Determination of the space-charge field in polymeric photorefractive material. Journal of Applied Physics, 2002, 91, 6471.	2.5	23
26	Influence of the Backbone on Photoinduced Birefringence in a Poly(malonic ester) Containing p-Cyanoazobenzene. Journal of Physical Chemistry B, 2002, 106, 5378-5381.	2.6	7
27	Synthesis and characterization of organic photorefractive glass. Synthetic Metals, 2002, 129, 281-283.	3.9	9
28	Photoinduced Birefringence in Poly(malonic ester) Containing p-Cyanoazobenzene with Photoexcitation of cis Conformer. Journal of Physical Chemistry B, 2001, 105, 8322-8326.	2.6	13
29	Polymeric photorefractive composite for holographic applications. Polymer, 2001, 42, 9863-9866.	3.8	50
30	Novel mechanism of fast relaxation of photo-induced anisotropy in a poly(malonic esters) containingp-cyanoazobenzene. Journal of Chemical Physics, 2000, 113, 8848-8851.	3.0	7