Dmitry Shtansky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1102837/publications.pdf

Version: 2024-02-01

202 papers 5,389 citations

38 h-index 149479 56 g-index

204 all docs

204 docs citations

times ranked

204

4273 citing authors

#	Article	IF	Citations
1	Microstructure and biological properties of titanium dioxide coatings doped with bioactive and bactericidal elements. Applied Surface Science, 2022, 575, 151755.	3.1	10
2	Surface modification and antibacterial properties of superelastic Ti-Zr-based alloys for medical application. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112183.	2.5	6
3	Hexagonal BN- and BNO-supported Au and Pt nanocatalysts in carbon monoxide oxidation and carbon dioxide hydrogenation reactions. Applied Catalysis B: Environmental, 2022, 303, 120891.	10.8	26
4	Ni/h-BN composites with high strength and ductility. Materials Letters, 2022, 308, 131285.	1.3	8
5	Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas. Molecules, 2022, 27, 1333.	1.7	11
6	Ag-Contained Superabsorbent Curdlan–Chitosan Foams for Healing Wounds in a Type-2 Diabetic Mice Model. Pharmaceutics, 2022, 14, 724.	2.0	9
7	Plasmaâ€coated PCL scaffolds with immobilized plateletâ€rich plasma enhance the wound healing in diabetics mice. Plasma Processes and Polymers, 2022, 19, .	1.6	8
8	Al-based composites reinforced with ceramic particles formed by in situ reactions between Al and amorphous SiNxOy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143105.	2.6	4
9	Electro-spark deposition of amorphous Fe-based coatings in vacuum and in argon controlled by surface wettability. Materials Letters, 2022, 318, 132195.	1.3	5
10	Reaction Sintering of Machinable TiB2-BN-C Ceramics with In-Situ Formed h-BN Nanostructure. Nanomaterials, 2022, 12, 1379.	1.9	3
11	Nanopowder derived Al/h-BN composites with high strength and ductility. Journal of Alloys and Compounds, 2022, 912, 165199.	2.8	10
12	Adhesion and Proliferation of Mesenchymal Stem Cells on Plasma-Coated Biodegradable Nanofibers. Journal of Composites Science, 2022, 6, 193.	1.4	4
13	Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing. Journal of Alloys and Compounds, 2021, 859, 157765.	2.8	28
14	Insight into high temperature performance of magnetron sputtered Si-Ta-C-(N) coatings with an ion-implanted interlayer. Applied Surface Science, 2021, 541, 148526.	3.1	11
15	Antibacterial activity of therapeutic agent-immobilized nanostructured TiCaPCON films against antibiotic-sensitive and antibiotic-resistant Escherichia coli strains. Surface and Coatings Technology, 2021, 405, 126538.	2.2	5
16	Bactericidal, Fungicidal, and Immunomodulating Activities of Nanosurfaces., 2021,, 19-35.		0
17	Elevated-temperature high-strength h-BN-doped Al2014 and Al7075 composites: Experimental and theoretical insights. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140969.	2.6	10
18	Ag-Doped and Antibiotic-Loaded Hexagonal Boron Nitride Nanoparticles as Promising Carriers to Fight Different Pathogens. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23452-23468.	4.0	17

#	Article	IF	Citations
19	Different concepts for creating antibacterial yet biocompatible surfaces: Adding bactericidal element, grafting therapeutic agent through COOH plasma polymer and their combination. Applied Surface Science, 2021, 556, 149751.	3.1	11
20	Al/SiC nanocomposites with enhanced thermomechanical properties obtained from microwave plasma-treated nanopowders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141817.	2.6	9
21	Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights. Journal of Catalysis, 2021, 402, 130-142.	3.1	21
22	Electro-spark deposition in vacuum using graphite electrode at different electrode polarities: Peculiarities of microstructure, electrochemical and tribological properties. Applied Surface Science, 2021, 566, 150722.	3.1	15
23	Amorphous MoSxOy/h-BNxOy Nanohybrids: Synthesis and Dye Photodegradation. Nanomaterials, 2021, 11, 3232.	1.9	6
24	Polyol Synthesis of Ag/BN Nanohybrids and their Catalytic Stability in CO Oxidation Reaction. ChemCatChem, 2020, 12, 1691-1698.	1.8	11
25	Crossâ€Bar SnO ₂ â€NiO Nanofiberâ€Arrayâ€Based Transparent Photodetectors with High Detectivity. Advanced Electronic Materials, 2020, 6, 1901048.	2.6	68
26	Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. ACS Applied Materials & Enterfaces, 2020, 12, 42485-42498.	4.0	30
27	New insights into synthesis of nanocrystalline hexagonal BN. Ceramics International, 2020, 46, 19866-19872.	2.3	17
28	Obtaining Heterogeneous Al/BN Nanoparticles in Microwave Plasma. Technical Physics Letters, 2020, 46, 484-486.	0.2	3
29	Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: Experimental study and molecular dynamics simulation. Tribology International, 2020, 151, 106493.	3.0	39
30	Healing effect in coatings deposited by hybrid technology of vacuum electro-spark alloying, pulsed cathodic arc evaporation, and magnetron sputtering using Cr ₃ C ₂ -NiAl electrodes. Journal of Physics: Conference Series, 2020, 1431, 012027.	0.3	7
31	Ag(Pt) nanoparticles-decorated bioactive yet antibacterial Ca- and P-doped TiO2 coatings produced by plasma electrolytic oxidation and ion implantation. Applied Surface Science, 2020, 516, 146068.	3.1	34
32	(Ni,Cu)/hexagonal BN nanohybrids – New efficient catalysts for methanol steam reforming and carbon monoxide oxidation. Chemical Engineering Journal, 2020, 395, 125109.	6.6	39
33	Comparative investigation of single-layer and multilayer Nb-doped TiC coatings deposited by pulsed vacuum deposition techniques. Surface and Coatings Technology, 2020, 385, 125422.	2.2	14
34	Desorption Properties and Bactericidal and Fungicidal Activity of Nanostructured Coatings Based on Hexagonal Boron Nitride Saturated with Therapeutic Preparations. Nanotechnologies in Russia, 2020, 15, 445-450.	0.7	1
35	TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28699-28719.	4.0	16
36	Hybrid Technology Combining Vacuum Electrospark Alloying, Cathodic Arc Evaporation, and Magnetron Sputtering for the Deposition of Hard Wear-Resistant Coatings. Russian Journal of Non-Ferrous Metals, 2019, 60, 598-607.	0.2	2

#	Article	IF	CITATIONS
37	Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials, 2019, 9, 637.	1.9	47
38	Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Applied Surface Science, 2019, 479, 796-802.	3.1	23
39	Two-layer nanocomposite WC/a-C coatings produced by a combination of pulsed arc evaporation and electro-spark deposition in vacuum. Materials and Design, 2019, 167, 107645.	3.3	23
40	High-Strength Aluminum-Based Composite Materials Reinforced by Microstructures and Nanostructures (Mini Review). Russian Journal of Non-Ferrous Metals, 2019, 60, 720-729.	0.2	3
41	Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation. Catalysis Science and Technology, 2019, 9, 6460-6470.	2.1	7
42	Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds. Nanomaterials, 2019, 9, 1769.	1.9	37
43	Plasma Surface Polymerized and Biomarker Conjugated Boron Nitride Nanoparticles for Cancer-Specific Therapy: Experimental and Theoretical Study. Nanomaterials, 2019, 9, 1658.	1.9	6
44	Microstructure, chemical and biological performance of boron-modified TiCaPCON films. Applied Surface Science, 2019, 465, 486-497.	3.1	7
45	Fabrication of Ta-Si-C targets and their utilization for deposition of low friction wear resistant nanocomposite Si-Ta-C-(N) coatings intended for wide temperature range tribological applications. Surface and Coatings Technology, 2019, 359, 342-353.	2.2	17
46	Spark plasma sintered Al-based composites reinforced with BN nanosheets exfoliated under ball milling in ethylene glycol. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 74-81.	2.6	33
47	AlÂâ^' BN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experimental verification. Journal of Alloys and Compounds, 2019, 782, 875-880.	2.8	20
48	Structure and antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method. Colloids and Surfaces B: Biointerfaces, 2019, 173, 719-724.	2.5	12
49	Hollow spherical and nanosheet-base BN nanoparticles as perspective additives to oil lubricants: Correlation between large-scale friction behavior and in situ TEM compression testing. Ceramics International, 2018, 44, 6801-6809.	2.3	28
50	Compressive properties of hollow BN nanoparticles: theoretical modeling and testing using a high-resolution transmission electron microscope. Nanoscale, 2018, 10, 8099-8105.	2.8	8
51	Comparative study of Ti-C-Ni-Al, Ti-C-Ni-Fe, and Ti-C-Ni-Al/Ti-C-Ni-Fe coatings produced by magnetron sputtering, electro-spark deposition, and a combined two-step process. Ceramics International, 2018, 44, 7637-7646.	2.3	26
52	Al-based composites reinforced with AlB2, AlN and BN phases: Experimental and theoretical studies. Materials and Design, 2018, 141, 88-98.	3.3	69
53	BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments. Catalysis Science and Technology, 2018, 8, 1652-1662.	2.1	23
54	Synergistic and long-lasting antibacterial effect of antibiotic-loaded TiCaPCON-Ag films against pathogenic bacteria and fungi. Materials Science and Engineering C, 2018, 90, 289-299.	3.8	27

#	Article	IF	CITATIONS
55	Comparative investigation of antibacterial yet biocompatible Ag-doped multicomponent coatings obtained by pulsed electrospark deposition and its combination with ion implantation. Ceramics International, 2018, 44, 3765-3774.	2.3	5
56	Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization. Applied Surface Science, 2018, 435, 1220-1227.	3.1	27
57	Effect of carbamide concentration on electrodeposition and tribological properties of Al 2 O 3 nanoparticle reinforced nickel nanocomposite coatings. Tribology International, 2018, 117, 68-77.	3.0	25
58	Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction. Journal of Catalysis, 2018, 368, 217-227.	3.1	18
59	Experimental and Theoretical Study of Doxorubicin Physicochemical Interaction with BN(O) Drug Delivery Nanocarriers. Journal of Physical Chemistry C, 2018, 122, 26409-26418.	1.5	14
60	Temperature-dependent structural transformation and friction behavior of nanocomposite VCN-(Ag) coatings. Materials and Design, 2018, 160, 964-973.	3.3	29
61	Facile chemical routes to mesoporous silver substrates for SERS analysis. Beilstein Journal of Nanotechnology, 2018, 9, 880-889.	1.5	4
62	BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents. Beilstein Journal of Nanotechnology, 2018, 9, 250-261.	1.5	18
63	The Effect of Eu2O3 Additive to the TiCNiCr Electrode on the Formation of Electrospark Coatings. Technical Physics Letters, 2018, 44, 753-755.	0.2	5
64	Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale, 2018, 10, 17477-17493.	2.8	75
65	Antibacterial Performance of TiCaPCON Films Incorporated with Ag, Pt, and Zn: Bactericidal Ions Versus Surface Microgalvanic Interactions. ACS Applied Materials & Diterfaces, 2018, 10, 24406-24420.	4.0	18
66	Structure Amorphization and Mechanical Properties of Nanolaminates of the Copper–Niobium System During High-Pressure Torsion. Russian Physics Journal, 2018, 61, 428-438.	0.2	4
67	Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Materials and Design, 2018, 153, 60-70.	3.3	54
68	Silver Eco-Solvent Ink for Reactive Printing of Polychromatic SERS and SPR Substrates. Sensors, 2018, 18, 521.	2.1	7
69	Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment. Journal of Physical Chemistry Letters, 2018, 9, 5086-5091.	2.1	11
70	<i>In vitro</i> bioactivity study of <scp>TiCaPCO(N)</scp> and Agâ€doped <scp>TiCaPCO(N)</scp> films in simulated body fluid. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 193-203.	1.6	8
71	Multilayer SiBCN/TiAlSiCN and AlOx/TiAlSiCN coatings with high thermal stability and oxidation resistance. Surface and Coatings Technology, 2017, 319, 277-285.	2.2	11
72	Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo-Si-B and Mo-Al-Si-B coatings. Corrosion Science, 2017, 123, 319-327.	3.0	61

#	Article	IF	Citations
73	Determination of NH 2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde. Applied Surface Science, 2017, 414, 390-397.	3.1	16
74	The defining role of pH in the green synthesis of plasmonic gold nanoparticles using Citrus limon extract. Gold Bulletin, 2017, 50, 131-136.	1.1	15
75	High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Materials Science & Dineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 681, 1-9.	2.6	93
76	Approaches for Controlled Ag ⁺ Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4259-4271.	4.0	45
77	Microstructure, mechanical, and tribological properties of Ag-free and Ag-doped VCN coatings. Surface and Coatings Technology, 2017, 331, 77-84.	2.2	32
78	Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS Applied Materials & Drug Resistance. 32498-32508.	4.0	27
79	Synthesis and Characterization of Folate Conjugated Boron Nitride Nanocarriers for Targeted Drug Delivery. Journal of Physical Chemistry C, 2017, 121, 28096-28105.	1.5	29
80	A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo–B–(N), Cr–B–(N) and Ti–B–(N) systems. Physics of Metals and Metallography, 20: 118, 1136-1146.	l 7 9.3	25
81	Mechanical properties of decellularized extracellular matrix coated with TiCaPCON film. Biomedical Materials (Bristol), 2017, 12, 035014.	1.7	12
82	Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Materials and Design, 2017, 132, 257-265.	3.3	45
83	Combustion synthesis of Ti-C-Co-Ca3(PO4)2-Ag-Mg electrodes and their utilization for pulsed electrospark deposition of bioactive coatings having an antibacterial effect. Surface and Coatings Technology, 2017, 309, 75-85.	2.2	6
84	Self-propagating high-temperature synthesis of advanced materials and coatings. International Materials Reviews, 2017, 62, 203-239.	9.4	271
85	Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range. Applied Surface Science, 2017, 396, 110-120.	3.1	32
86	Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers, 2017, 9, 736.	2.0	35
87	Materials and Coatings for High-Temperature Applications. , 2017, , 188-189.		0
88	SHS Materials in Medicine. , 2017, , 325-327.		0
89	Comparative Study of Sliding, Scratching, and Impact-Loading Behavior of Hard CrB2 and Cr–B–N Films. Tribology Letters, 2016, 63, 1.	1.2	29
90	Growth of spherical boron oxynitride nanoparticles with smooth and petalled surfaces during a chemical vapour deposition process. CrystEngComm, 2016, 18, 6689-6699.	1.3	14

#	Article	IF	Citations
91	Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study. Nanoscale, 2016, 8, 20080-20089.	2.8	19
92	Three-dimensional biocompatible matrix for reconstructive surgery. AIP Conference Proceedings, 2016, , .	0.3	2
93	Structural transformations in TiC-CaO-Ti3PO(x)-(Ag2Ca) electrodes and biocompatible TiCaPCO(N)-(Ag) coatings during pulsed electrospark deposition. Surface and Coatings Technology, 2016, 302, 327-335.	2.2	9
94	Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy. Corrosion Science, 2016, 111, 753-769.	3.0	172
95	Inkjet printing of silver rainbow colloids for SERS chips with polychromatic sensitivity. RSC Advances, 2016, 6, 15535-15540.	1.7	11
96	Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions. RSC Advances, 2016, 6, 12688-12698.	1.7	32
97	Structure and properties of Cr–Al–Si–B coatings produced by pulsed electrospark deposition on a nickel alloy. Surface and Coatings Technology, 2016, 285, 278-288.	2.2	26
98	Nanostructured BN–Mg composites: features of interface bonding and mechanical properties. Physical Chemistry Chemical Physics, 2016, 18, 965-969.	1.3	12
99	Structural analysis and atomic simulation of Ag/BN nanoparticle hybrids obtained by Ag ion implantation. Materials and Design, 2016, 98, 167-173.	3.3	16
100	A new insight into hard low friction MoCN–Ag coatings intended for applications in wide temperature range. Materials and Design, 2016, 93, 63-72.	3.3	49
101	Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 49, 255-268.	1.5	17
102	Kinetic model of co-deposition of thin multicomponent films. Materials Letters, 2015, 156, 118-120.	1.3	3
103	Investigation of the Si–B–C–N coatings deposited by magnetron sputtering of SiBC targets. Russian Journal of Non-Ferrous Metals, 2015, 56, 540-547.	0.2	11
104	Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading. Applied Surface Science, 2015, 330, 339-350.	3.1	14
105	Surface modification of TiAlSiCN coatings to improve oxidation protection. Applied Surface Science, 2015, 347, 713-718.	3.1	13
106	Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites. Materials Science & Degramp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 104-112.	2.6	81
107	Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. ACS Applied Materials & Drug-Delivery Systems. ACS	4.0	87
108	Hard wear-resistant TiAlSiCN/MoSeC coatings with a low friction coefficient at room and elevated temperatures. Russian Journal of Non-Ferrous Metals, 2015, 56, 107-113.	0.2	1

#	Article	IF	CITATIONS
109	A comparative study of the structure and chemical properties of nanocomposite TiCaPCON-Ag coatings. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 416-426.	0.3	6
110	Line and rotational defects in boron-nitrene: Structure, energetics, and dependence on mechanical strain from first-principles calculations. Physica Status Solidi (B): Basic Research, 2015, 252, 1725-1730.	0.7	7
111	Multifunctional bioactive nanostructured films. , 2015, , 159-188.		6
112	Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Research, 2015, 8, 2063-2072.	5.8	34
113	Structure and properties of nanocomposite Mo—Si—B—(N) coatings. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 794-802.	0.3	19
114	Silicon carbide ceramics SHS-produced from mechanoactivated Si–C–B mixtures. International Journal of Self-Propagating High-Temperature Synthesis, 2015, 24, 119-127.	0.2	14
115	Toward bioactive yet antibacterial surfaces. Colloids and Surfaces B: Biointerfaces, 2015, 135, 158-165.	2.5	39
116	Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals. Journal of Materials Chemistry A, 2015, 3, 20749-20757.	5.2	20
117	Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings. Applied Surface Science, 2015, 327, 253-261.	3.1	23
118	Structural transformations in TiAlSiCN coatings in the temperature range 900–1600 °C. Acta Materialia, 2015, 83, 408-418.	3.8	23
119	The influence of Si concentrations on the oxidation resistance of Mo-Si-B-(N) coatings. Russian Journal of Non-Ferrous Metals, 2014, 55, 645-651.	0.2	16
120	High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28322-28329.	1.5	26
121	Toward Stronger Al–BN Nanotube Composite Materials: Insights into Bonding at the Al/BN Interface from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 26894-26901.	1.5	24
122	Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Applied Surface Science, 2014, 314, 104-111.	3.1	44
123	The effect of preliminary ion treatment on structure and chemical properties of polytetrafluoroethylene with a bioactive nanostructured coating. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49, 292-298.	0.3	2
124	Structure and tribological properties of MoCN-Ag coatings in the temperature range of 25–700 °C. Applied Surface Science, 2013, 273, 408-414.	3.1	80
125	Fabrication and characteristics of melt-spun Al ribbons reinforced with nano/micro-BN phases. Acta Materialia, 2013, 61, 7604-7615.	3.8	35
126	Ti-Cr-B-N coatings prepared by pulsed cathodic-arc evaporation of ceramic TiCrB target produced by SHS. Protection of Metals and Physical Chemistry of Surfaces, 2013, 49, 677-681.	0.3	14

#	Article	IF	Citations
127	Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films. Applied Surface Science, 2013, 285, 331-343.	3.1	25
128	Wear-resistant Ti-Al-Si-C-N coatings produced by magnetron sputtering of SHS targets. Russian Journal of Non-Ferrous Metals, 2013, 54, 330-335.	0.2	9
129	Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Research Letters, 2013, 8, 3.	3.1	46
130	Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 570, 51-62.	2.6	39
131	Recent progress in the field of multicomponent bioactive nanostructured films. RSC Advances, 2013, 3, 11107.	1.7	14
132	Comparative study of electrochemical and impact wear behavior of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN coatings. Surface and Coatings Technology, 2013, 216, 273-281.	2.2	57
133	Nonwetting and optical properties of BN nanosheet films. Surface Innovations, 2013, 1, 32-39.	1.4	29
134	Recent Progress in the Field of Multicomponent Biocompatible Nanostructured Films. Key Engineering Materials, 2013, 587, 263-268.	0.4	0
135	Structural Changes of BN Nanotubes Irradiated by Al Ions. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 87-90.	0.1	1
136	Surface Engineering for Biotribological Application. , 2013, , 277-310.		1
137	A new combined approach to metal-ceramic implants with controllable surface topography, chemistry, blind porosity, and wettability. Surface and Coatings Technology, 2012, 208, 14-23.	2.2	30
138	Structure and mechanical behavior during indentation of biocompatible nanostructured titanium alloys and coatings. Metallurgist, 2012, 56, 395-407.	0.2	7
139	High thermal stability of TiAlSiCN coatings with "comb―like nanocomposite structure. Surface and Coatings Technology, 2012, 206, 4840-4849.	2.2	22
140	Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Materialia, 2012, 60, 6213-6222.	3.8	44
141	Metal ion implantation of multiwalled boron nitride nanotubes. Scripta Materialia, 2012, 67, 507-510.	2.6	20
142	Influence of Zr and O on the structure and properties of TiC(N) coatings deposited by magnetron sputtering of composite TiC0.5+ZrO2 and (Ti, Zr)C0.5+ZrO2 targets. Surface and Coatings Technology, 2012, 206, 2506-2514.	2.2	10
143	Self-propagating high-temperature synthesis of composite targets based on titanium carbonitride, silicide, and aluminide for ion-plasma deposition of multifunctional coatings. Russian Journal of Non-Ferrous Metals, 2012, 53, 77-84.	0.2	10
144	Modification of polytetrafluoroethylene implants by depositing TiCaPCON films with and without stem cells. Surface and Coatings Technology, 2011, 206, 1188-1195.	2.2	39

#	Article	IF	Citations
145	Hard Cr-Al-Si-B-(N) coatings with oxidation resistance up to $1200 \hat{A}^{\circ}$ C. Glass Physics and Chemistry, 2011, 37, 411-417.	0.2	11
146	A comparative study of the structure and cytotoxicity of polytetrafluoroethylene after ion etching and ion implantation. Physics of the Solid State, 2011, 53, 638-642.	0.2	9
147	Nanostructured Ti-Cr-B-N and Ti-Cr-Si-C-N coatings for hard-alloy cutting tools. Russian Journal of Non-Ferrous Metals, 2011, 52, 311-318.	0.2	25
148	Comparative investigation of Al- and Cr-doped TiSiCN coatings. Surface and Coatings Technology, 2011, 205, 4640-4648.	2.2	39
149	Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties. Russian Metallurgy (Metally), 2010, 2010, 917-935.	0.1	33
150	The influence of elemental composition and surface topography on adhesion, proliferation and differentiation of osteoblasts. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, 4, 272-276.	0.3	4
151	Multicomponent nanostructured films for various tribological applications. International Journal of Refractory Metals and Hard Materials, 2010, 28, 32-39.	1.7	65
152	Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings. Thin Solid Films, 2010, 518, 5546-5552.	0.8	35
153	Si-doped multifunctional bioactive nanostructured films. Surface and Coatings Technology, 2010, 205, 728-739.	2.2	33
154	Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of ĐœĐĐ¥-phase Ti2â°Cr AlC targets. Surface and Coatings Technology, 2009, 203, 3595-3609.	2.2	71
155	Bonding Structure and Mechanical Properties of Tiâ€Bâ€C Coatings. Plasma Processes and Polymers, 2009, 6, S107.	1.6	18
156	Effect of nitrogen partial pressure on the structure, physical and mechanical properties of CrB2 and Cr–B–N films. Thin Solid Films, 2009, 517, 2675-2680.	0.8	40
157	On the scratch behaviour of self-lubricating WSe2 films. Wear, 2009, 267, 1909-1914.	1.5	10
158	Self-propagating high-temperature synthesis of ceramic materials based on the M n + $1AX$ n phases in the Ti-Cr-Al-C system. Russian Journal of Non-Ferrous Metals, 2009, 50, 151-159.	0.2	25
159	Ta-doped multifunctional bioactive nanostructured films. Surface and Coatings Technology, 2008, 202, 3615-3624.	2.2	35
160	Structure and properties of multi-component and multilayer TiCrBN/WSex coatings deposited by sputtering of TiCrB and WSe2 targets. Surface and Coatings Technology, 2008, 202, 5953-5961.	2.2	41
161	Bioactive ceramic tantalum-doped films for implants. Doklady Biochemistry and Biophysics, 2008, 418, 8-10.	0.3	5
162	Multifunctional nanostructured films. Russian Chemical Reviews, 2007, 76, 463-470.	2.5	36

#	Article	IF	Citations
163	Thermal stability and oxidation resistance of Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si– Surface and Coatings Technology, 2007, 201, 6143-6147.	Bậ€"N film 2.2	1 <u>S.</u> 56
164	Disperse-strengthening by nanoparticles advanced tribological coatings and electrode materials for their deposition. Surface and Coatings Technology, 2007, 201, 6176-6181.	2.2	17
165	Hard tribological Ti–Cr–B–N coatings with enhanced thermal stability, corrosion- and oxidation resistance. Surface and Coatings Technology, 2007, 202, 861-865.	2.2	35
166	The Structure and Mechanical Properties of Ti-Si-B Coatings Deposited by DC and Pulsed-DC Unbalanced Magnetron Sputtering. Plasma Processes and Polymers, 2007, 4, S687-S692.	1.6	23
167	Effect of Al, Si, and Cr on the thermal stability and high-temperature oxidation resistance of coatings based on titanium boronitride. Physics of Metals and Metallography, 2007, 104, 167-174.	0.3	13
168	Multifunctional biocompatible nanostructured coatings for load-bearing implants. Surface and Coatings Technology, 2006, 201, 4111-4118.	2.2	56
169	Adhesion, friction, and deformation characteristics of Ti-(Ca,Zr)-(C,N,O,P) coatings for orthopedic and dental implants. Physics of the Solid State, 2006, 48, 1301-1308.	0.2	28
170	Hybrid ICP/sputter deposition of TiC/CaO nanocomposite films for biomedical application. Applied Physics A: Materials Science and Processing, 2006, 82, 503-507.	1.1	16
171	Nanoparticle dispersion-strengthened coatings and electrode materials for electrospark deposition. Thin Solid Films, 2006, 515, 1161-1165.	0.8	22
172	Multifunctional Ti–(Ca,Zr)–(C,N,O,P) films for load-bearing implants. Biomaterials, 2006, 27, 3519-31.	5.7	44
173	Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Biomaterials, 2005, 26, 2909-2924.	5.7	81
174	Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings. Surface an Technology, 2005, 200, 208-212.	d Coatings 2.2	³ 86
175	Structure and Properties of Ti–B–N, Ti–Cr–B–(N), and Cr–B–(N) Coatings Deposited by Magnetron Sputtering of Targets Prepared by Self-Propagating High-Temperature Synthesis. Physics of the Solid State, 2005, 47, 252.	0.2	33
176	Structure and properties of CaO- and ZrO2-doped TiCxNy coatings for biomedical applications. Surface and Coatings Technology, 2004, 182, 101-111.	2.2	50
177	Comparative investigation of Ti–Si–N films magnetron sputtered using Ti5Si3+Ti and Ti5Si3+TiN targets. Surface and Coatings Technology, 2004, 182, 204-214.	2.2	39
178	Structure and tribological properties of WSex, WSex/TiN, WSex/TiCN and WSex/TiSiN coatings. Surface and Coatings Technology, 2004, 183, 328-336.	2.2	63
179	The prospects of nanodispersive powders application in surface engineering technologies. Surface and Coatings Technology, 2004, 180-181, 347-351.	2.2	17
180	Characterization of a hybrid PVD/PACVD system for the deposition of TiC/CaO nanocomposite films by OES and probe measurements. Surface and Coatings Technology, 2004, 188-189, 714-720.	2.2	17

#	Article	IF	CITATIONS
181	ICP assisted sputter deposition of TiC/CaO nanocomposite films. Surface and Coatings Technology, 2004, 188-189, 735-740.	2.2	25
182	$\label{lem:multicomponent} \begin{tabular}{l} Multicomponent Nanostructured Thin Films. Deposition, Characterization, Testing and Application. , 2004, , 155-165. \end{tabular}$		3
183	Structure and properties of dispersion-strengthened-with-nanosized particles refractory hard material TiC—Ni-alloy. Science and Technology of Advanced Materials, 2003, 4, 221-228.	2.8	8
184	Structure and physical-mechanical properties of nanostructured thin films. Physics of the Solid State, 2003, 45, 1177-1184.	0.2	55
185	Localized deformation of multicomponent thin films. Thin Solid Films, 2002, 420-421, 330-337.	0.8	37
186	Title is missing!. Journal of Materials Synthesis and Processing, 2002, 10, 319-330.	0.3	18
187	Evolution of nanostructural ensembles in boride-nitride films. Doklady Physics, 2002, 47, 353-355.	0.2	4
188	Characterization of nanostructured multiphase Ti–Al–B–N thin films with extremely small grain size. Surface and Coatings Technology, 2001, 148, 206-215.	2.2	54
189	Crystallography and structural evolution of LiNbO ₃ and LiNb _{1â^<i>x</i>} Ta _{<i>x</i>} O ₃ films on sapphire prepared by high-rate thermal plasma spray chemical vapor deposition. Journal of Materials Research, 2001, 16, 2271-2279.	1.2	11
190	Crystallography and structural evolution during reverse transformation in an Fe–17Cr–0.5C tempered martensite. Acta Materialia, 2000, 48, 1679-1689.	3.8	20
191	Crystallography and structural evolution of cubic boron nitride films during bias sputter deposition. Acta Materialia, 2000, 48, 3745-3759.	3.8	36
192	Decomposition of martensite by discontinuous-like precipitation reaction in an Fe–17Cr–0.5C alloy. Acta Materialia, 2000, 48, 969-983.	3.8	35
193	Mechanism of nucleation and growth of cubic boron nitride thin films. Science and Technology of Advanced Materials, 2000, 1, 219-225.	2.8	24
194	Mechanism and crystallography of ferrite precipitation from cementite in an Fe-Cr-C alloy during austenitization. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 1655-1669.	0.8	13
195	Crystallography and interface boundary structure of pearlite with M7C3 carbide lamellae. Acta Materialia, 1999, 47, 1105-1115.	3.8	25
196	Pearlite to austenite transformation in an Fe–2.6Cr–1C alloy. Acta Materialia, 1999, 47, 2619-2632.	3.8	74
197	Optimization of PVD Parameters for the Deposition of Ultrahard Ti–Si–B–N Coatings. Journal of Materials Synthesis and Processing, 1999, 7, 187-193.	0.3	28
198	Synthesis and characterization of Ti-Si-C-N films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2439-2447.	1.1	52

#	Article	IF	CITATION
199	Features of Fracture Surface and Grain Boundary Structure of Boride/Nitride Materials. Materials Research Society Symposia Proceedings, 1999, 581, 583.	0.1	3
200	Title is missing!. Journal of Materials Synthesis and Processing, 1998, 6, 61-72.	0.3	49
201	PHASE TRANSFORMATION IN Fe-Mo-C AND Fe-W-C STEELS—I. THE STRUCTURAL EVOLUTION DURING TEMPERING AT 700°C. Acta Materialia, 1997, 45, 2861-2878.	3.8	78
202	PHASE TRANSFORMATION IN Fe-Mo-C AND Fe-W-C STEELS—II. EUTECTOID REACTION OF M23C6 CARBIDE DECOMPOSITION DURING AUSTENITIZATION. Acta Materialia, 1997, 45, 2879-2895.	3.8	39