Bruno Mdc Godinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11027348/publications.pdf

Version: 2024-02-01

623734 940533 17 962 14 16 citations g-index h-index papers 18 18 18 1473 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing. Molecular Therapy, 2016, 24, 1836-1847.	8.2	351
2	5î,,-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Research, 2017, 45, 7581-7592.	14.5	83
3	Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain. Molecular Therapy - Nucleic Acids, 2016, 5, e344.	5.1	67
4	Serum Deprivation of Mesenchymal Stem Cells Improves Exosome Activity and Alters Lipid and Protein Composition. IScience, 2019, 16, 230-241.	4.1	61
5	Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: In vitro analysis. European Journal of Pharmaceutical Sciences, 2015, 71, 80-92.	4.0	57
6	Non-Viral Nanosystems for Gene and Small Interfering RNA Delivery to the Central Nervous System: Formulating the Solution. Journal of Pharmaceutical Sciences, 2013, 102, 3469-3484.	3.3	46
7	PEGylated cyclodextrins as novel siRNA nanosystems: Correlations between polyethylene glycol length and nanoparticle stability. International Journal of Pharmaceutics, 2014, 473, 105-112.	5.2	45
8	Delivering a disease-modifying treatment for Huntington's disease. Drug Discovery Today, 2015, 20, 50-64.	6.4	39
9	A High-Throughput Method for Direct Detection of Therapeutic Oligonucleotide-Induced Gene Silencing < i > In Vivo < / i > . Nucleic Acid Therapeutics, 2016, 26, 86-92.	3.6	38
10	Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay. Nucleic Acid Therapeutics, 2017, 27, 323-334.	3.6	37
11	Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials, 2014, 35, 489-499.	11.4	36
12	Transvascular Delivery of Hydrophobically Modified siRNAs: Gene Silencing in the Rat Brain upon Disruption of the Blood-Brain Barrier. Molecular Therapy, 2018, 26, 2580-2591.	8.2	36
13	Synthesis and Evaluation of Parenchymal Retention and Efficacy of a Metabolically Stable <i>O</i> -Phosphocholine- <i>N</i> -docosahexaenoyl- <scp>I</scp> -serine siRNA Conjugate in Mouse Brain. Bioconjugate Chemistry, 2017, 28, 1758-1766.	3.6	33
14	Cyclodextrins for Non-Viral Gene and siRNA Delivery. Pharmaceutical Nanotechnology, 2012, 1, 6-14.	1.5	16
15	Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep. JCI Insight, 2021, 6, .	5.0	9
16	PK-modifying anchors significantly alter clearance kinetics, tissue distribution, and efficacy of therapeutics siRNAs. Molecular Therapy - Nucleic Acids, 2022, 29, 116-132.	5.1	7
17	Disrupting The Brain Keeper To Allow Silencing Of Deleterious Genes In The Nervous System. , 2018, , .		O