
Jianfang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11027181/publications.pdf Version: 2024-02-01

LIANFANC WANC

#	Article	IF	CITATIONS
1	A Schottkyâ€Barrierâ€Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "Oneâ€Stoneâ€Twoâ€Birds―Manner. Advanced Materials, 2022, 34, e2104226.	21.0	60
2	All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres. Nano Letters, 2022, 22, 1406-1414.	9.1	18
3	Mode-dependent energy exchange between near- and far-field through silicon-supported single silver nanorods. Nanoscale, 2022, 14, 8362-8373.	5.6	3
4	Titanium Oxynitride Spheres with Broad Plasmon Resonance for Solar Seawater Desalination. ACS Applied Materials & Interfaces, 2022, 14, 28769-28780.	8.0	9
5	Generation and Detection of Strain-Localized Excitons in WS ₂ Monolayer by Plasmonic Metal Nanocrystals. ACS Nano, 2022, 16, 10647-10656.	14.6	14
6	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angewandte Chemie, 2021, 133, 940-949.	2.0	12
7	Asymmetric Light Scattering on Heterodimers Made of Au Nanorods Vertically Standing on Au Nanodisks. Advanced Optical Materials, 2021, 9, 2001595.	7.3	8
8	Directional Control of Light with Nanoantennas. Advanced Optical Materials, 2021, 9, .	7.3	44
9	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angewandte Chemie - International Edition, 2021, 60, 927-936.	13.8	61
10	Electromagnetic Resonanceâ€Modulated Magnetic Emission in Europiumâ€Doped Subâ€Micrometer Zirconia Spheres. Advanced Optical Materials, 2021, 9, 2002212.	7.3	11
11	Electrophoretic Plasmonic Ink for Dynamic Color Display. Advanced Optical Materials, 2021, 9, 2100091.	7.3	5
12	Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of <i>o</i> -Phenylenediamine. ACS Applied Materials & Interfaces, 2021, 13, 51855-51866.	8.0	12
13	Driving Click Reactions with Plasmonic Hot Holes on (Au Core)@(Cu ₂ O Shell) Nanostructures for Regioselective Production of 1,2,3-Triazoles. ACS Applied Nano Materials, 2021, 4, 4623-4631.	5.0	12
14	How to Utilize Excited Plasmon Energy Efficiently. ACS Nano, 2021, 15, 10759-10768.	14.6	39
15	Facet- and Gas-Dependent Reshaping of Au Nanoplates by Plasma Treatment. ACS Nano, 2021, 15, 9860-9870.	14.6	9
16	Sophisticated plasmon-enhanced photo-nanozyme for anti-angiogenic and tumor-microenvironment-responsive combinatorial photodynamic and photothermal cancer therapy. Journal of Industrial and Engineering Chemistry, 2021, 104, 106-106.	5.8	8
17	Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 2021, 121, 13342-13453.	47.7	237
18	Plasmonâ€Enhanced, Selfâ€Traced Nanomotors on the Surface of Silicon. Angewandte Chemie - International Edition, 2021, 60, 24958-24967.	13.8	7

#	Article	IF	CITATIONS
19	Strengthening Fano resonance on gold nanoplates with gold nanospheres. Nanoscale, 2020, 12, 1975-1984.	5.6	18
20	(Metal yolk)/(porous ceria shell) nanostructures for high-performance plasmonic photocatalysis under visible light. Nano Research, 2020, 13, 1354-1362.	10.4	15
21	Plasmonic Color Laser Printing inside Transparent Gold Nanodiskâ€Embedded Poly(dimethylsiloxane) Matrices. Advanced Optical Materials, 2020, 8, 1901605.	7.3	27
22	Electrochemical coating of different conductive polymers on diverse plasmonic metal nanocrystals. Nanoscale, 2020, 12, 21617-21623.	5.6	13
23	(Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) shell) nanostructures and their monolayer arrays for plasmonic switching. Nanoscale, 2020, 12, 20684-20692.	5.6	8
24	Substrateâ€Modulated Electromagnetic Resonances in Colloidal Cu 2 O Nanospheres. Particle and Particle Systems Characterization, 2020, 37, 2000106.	2.3	5
25	Substrate-Enabled Plasmonic Color Switching with Colloidal Gold Nanorings. , 2020, 2, 744-753.		11
26	Gold nanonails for surface-enhanced infrared absorption. Nanoscale Horizons, 2020, 5, 1200-1212.	8.0	24
27	Electrochemical Switching of Plasmonic Colors Based on Polyaniline-Coated Plasmonic Nanocrystals. ACS Applied Materials & Interfaces, 2020, 12, 17733-17744.	8.0	28
28	Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale, 2020, 12, 8095-8108.	5.6	38
29	Gold nanobipyramid-embedded ultrathin metal nanoframes for <i>in situ</i> monitoring catalytic reactions. Chemical Science, 2020, 11, 3198-3207.	7.4	35
30	Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation. Journal of Materials Chemistry A, 2020, 8, 16218-16231.	10.3	74
31	General Method for Determining Light Scattering and Absorption of Nanoparticle Composites. Advanced Optical Materials, 2019, 7, 1801315.	7.3	10
32	Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Accounts of Chemical Research, 2019, 52, 2136-2146.	15.6	133
33	Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. Small, 2019, 15, e1902608.	10.0	39
34	Antiangiogenesis-Combined Photothermal Therapy in the Second Near-Infrared Window at Laser Powers Below the Skin Tolerance Threshold. Nano-Micro Letters, 2019, 11, 93.	27.0	22
35	AlPcS-loaded gold nanobipyramids with high two-photon efficiency for photodynamic therapy <i>in vivo</i> . Nanoscale, 2019, 11, 3386-3395.	5.6	20
36	Au Nanobottles with Synthetically Tunable Overall and Opening Sizes for Chemo-Photothermal Combined Therapy. ACS Applied Materials & Interfaces, 2019, 11, 5353-5363.	8.0	19

#	Article	IF	CITATIONS
37	Switching plasmonic Fano resonance in gold nanosphere–nanoplate heterodimers. Nanoscale, 2019, 11, 9641-9653.	5.6	19
38	Dopamine-Mediated Assembly of Citrate-Capped Plasmonic Nanoparticles into Stable Core–Shell Nanoworms for Intracellular Applications. ACS Nano, 2019, 13, 5864-5884.	14.6	57
39	Colour routing with single silver nanorods. Light: Science and Applications, 2019, 8, 39.	16.6	34
40	Site-Selective Growth of Crystalline Ceria with Oxygen Vacancies on Gold Nanocrystals for Near-Infrared Nitrogen Photofixation. Journal of the American Chemical Society, 2019, 141, 5083-5086.	13.7	222
41	Molecular Sensitivities of Substrate-Supported Gold Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 7336-7346.	3.1	14
42	Circular Gold Nanodisks with Synthetically Tunable Diameters and Thicknesses. Advanced Functional Materials, 2018, 28, 1705516.	14.9	47
43	Self-assembly of Au@Ag core–shell nanocuboids into staircase superstructures by droplet evaporation. Nanoscale, 2018, 10, 142-149.	5.6	44
44	Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews, 2018, 118, 3054-3099.	47.7	483
45	Titania oated Gold Nanoâ€Bipyramids for Blocking Autophagy Flux and Sensitizing Cancer Cells to Proteasome Inhibitorâ€Induced Death. Advanced Science, 2018, 5, 1700585.	11.2	50
46	Advanced Plasmonic Materials for Dynamic Color Display. Advanced Materials, 2018, 30, e1704338.	21.0	176
47	Colloidal porous gold nanoparticles. Nanoscale, 2018, 10, 18473-18481.	5.6	31
48	Infraredâ€Responsive Colloidal Silver Nanorods for Surfaceâ€Enhanced Infrared Absorption. Advanced Optical Materials, 2018, 6, 1800436.	7.3	32
49	Emerging Applications of Plasmons in Driving CO ₂ Reduction and N ₂ Fixation. Advanced Materials, 2018, 30, e1802227.	21.0	155
50	Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates. Nanoscale, 2018, 10, 15058-15070.	5.6	18
51	Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C ₃ N ₄ hybrid nanostructures for photocatalytic hydrogen generation. Physical Chemistry Chemical Physics, 2018, 20, 22296-22307.	2.8	57
52	Coupling between the Mie Resonances of Cu ₂ O Nanospheres and the Excitons of Dye Aggregates. ACS Photonics, 2018, 5, 3838-3848.	6.6	33
53	High-Efficiency "Working-in-Tandem―Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. Journal of the American Chemical Society, 2018, 140, 8497-8508.	13.7	382
54	Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity. ACS Applied Materials & Interfaces, 2017, 9, 2560-2571.	8.0	65

#	Article	IF	CITATIONS
55	New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. Journal of the American Chemical Society, 2017, 139, 3513-3521.	13.7	693
56	Selective Pd Deposition on Au Nanobipyramids and Pd Siteâ€Dependent Plasmonic Photocatalytic Activity. Advanced Functional Materials, 2017, 27, 1700016.	14.9	94
57	Active Electrochemical Plasmonic Switching on Polyaniline oated Gold Nanocrystals. Advanced Materials, 2017, 29, 1604862.	21.0	99
58	Gold Nanobipyramidâ€Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching â‰^140 nm at 2 vol% Hydrogen Concentration. Advanced Optical Materials, 2017, 5, 1700740.	7.3	34
59	Largeâ€Area Patterning of Metal Nanostructures by Dipâ€Pen Nanodisplacement Lithography for Optical Applications. Small, 2017, 13, 1702003.	10.0	29
60	Realization of Red Plasmon Shifts up to â^1⁄4900 nm by AgPd-Tipping Elongated Au Nanocrystals. Journal of the American Chemical Society, 2017, 139, 13837-13846.	13.7	96
61	Dielectric nanoresonators for light manipulation. Physics Reports, 2017, 701, 1-50.	25.6	145
62	Functional Metal Nanocrystals for Biomedical Applications. , 2017, , 809-840.		1
63	Localized and Continuous Tuning of Monolayer MoS ₂ Photoluminescence Using a Single Shapeâ€Controlled Ag Nanoantenna. Advanced Materials, 2016, 28, 701-706.	21.0	73
64	Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals. Nanoscale, 2016, 8, 17645-17657.	5.6	45
65	Plasmon-assisted Chemical Reactions. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 155-193.	0.1	1
66	Thickness Control Produces Gold Nanoplates with Their Plasmon in the Visible and Nearâ€Infrared Regions. Advanced Optical Materials, 2016, 4, 76-85.	7.3	91
67	Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu ₂ 0 Nanorods. Small, 2016, 12, 4264-4276.	10.0	28
68	Porous Pt Nanoparticles with High Nearâ€Infrared Photothermal Conversion Efficiencies for Photothermal Therapy. Advanced Healthcare Materials, 2016, 5, 3165-3172.	7.6	71
69	Gold Nanobipyramidâ€Supported Silver Nanostructures with Narrow Plasmon Linewidths and Improved Chemical Stability. Advanced Functional Materials, 2016, 26, 341-352.	14.9	119
70	Chemically functionalized graphene/polymer nanocomposites as light heating platform. Polymer Composites, 2016, 37, 1350-1358.	4.6	15
71	Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods. Nanoscale, 2016, 8, 6514-6526.	5.6	25
72	Aerosol-spray diverse mesoporous metal oxides from metal nitrates. Scientific Reports, 2015, 5, 9923.	3.3	42

#	Article	IF	CITATIONS
73	Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. Advanced Optical Materials, 2015, 3, 801-812.	7.3	215
74	Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties. Langmuir, 2015, 31, 7418-7426.	3.5	76
75	Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances. ACS Nano, 2015, 9, 7523-7535.	14.6	135
76	Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres. Nanoscale, 2015, 7, 12516-12526.	5.6	32
77	Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit. Plasmonics, 2015, 10, 1489-1497.	3.4	12
78	Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods. Physical Chemistry Chemical Physics, 2015, 17, 10861-10870.	2.8	46
79	Functional Metal Nanocrystals for Biomedical Applications. , 2015, , 1-32.		0
80	Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen. Advanced Functional Materials, 2014, 24, 7328-7337.	14.9	61
81	Metal/Semiconductor Hybrid Nanostructures for Plasmonâ€Enhanced Applications. Advanced Materials, 2014, 26, 5274-5309.	21.0	926
82	Macroscale Colloidal Noble Metal Nanocrystal Arrays and Their Refractive Indexâ€Based Sensing Characteristics. Small, 2014, 10, 802-811.	10.0	59
83	Bifunctional Au@Pt core–shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale, 2014, 6, 9063-9070.	5.6	81
84	Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures. ACS Nano, 2014, 8, 8208-8216.	14.6	116
85	(Gold Core)@(Ceria Shell) Nanostructures for Plasmon-Enhanced Catalytic Reactions under Visible Light. ACS Nano, 2014, 8, 8152-8162.	14.6	230
86	(Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy and Environmental Science, 2014, 7, 3431-3438.	30.8	180
87	Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Nanoscale, 2014, 6, 11462-11472.	5.6	92
88	(Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths. Advanced Materials, 2014, 26, 3282-3289.	21.0	129
89	Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nature Communications, 2013, 4, 2381.	12.8	612
90	Correlating the Plasmonic and Structural Evolutions during the Sulfidation of Silver Nanocubes. ACS Nano, 2013, 7, 9354-9365.	14.6	57

#	Article	IF	CITATIONS
91	The use of femto-second lasers to trigger powerful explosions of gold nanorods to destroy cancer cells. Biomaterials, 2013, 34, 6157-6162.	11.4	25
92	Anisotropic Overgrowth of Metal Heterostructures Induced by a Siteâ€Selective Silica Coating. Angewandte Chemie - International Edition, 2013, 52, 10344-10348.	13.8	139
93	Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42, 2679-2724.	38.1	1,576
94	Metal Nanocrystalâ€Embedded Hollow Mesoporous TiO ₂ and ZrO ₂ Microspheres Prepared with Polystyrene Nanospheres as Carriers and Templates. Advanced Functional Materials, 2013, 23, 2137-2144.	14.9	112
95	Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2013, 135, 5588-5601.	13.7	597
96	Plasmon-enhanced chemical reactions. Journal of Materials Chemistry A, 2013, 1, 5790.	10.3	257
97	Time–Temperature Indicator for Perishable Products Based on Kinetically Programmable Ag Overgrowth on Au Nanorods. ACS Nano, 2013, 7, 4561-4568.	14.6	173
98	Fabrication of Au nanotube arrays and their plasmonic properties. Nanoscale, 2013, 5, 3742.	5.6	31
99	Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions. Nanoscale, 2013, 5, 788-795.	5.6	69
100	Mass-Based Photothermal Comparison Among Gold Nanocrystals, PbS Nanocrystals, Organic Dyes, and Carbon Black. Journal of Physical Chemistry C, 2013, 117, 8909-8915.	3.1	97
101	Anisotropic Overgrowth of Metal Heterostructures Induced by a Siteâ€Selective Silica Coating. Angewandte Chemie, 2013, 125, 10534-10538.	2.0	21
102	Plasmonic Properties of Single Multispiked Gold Nanostars: Correlating Modeling with Experiments. Langmuir, 2012, 28, 8979-8984.	3.5	80
103	Extraordinary Surface Plasmon Coupled Emission Using Core/Shell Gold Nanorods. Journal of Physical Chemistry C, 2012, 116, 9259-9264.	3.1	34
104	Formation of Different Gold Nanocrystal Core–Resin Shell Structures through the Control of the Core Assembly and Shell Polymerization. Langmuir, 2012, 28, 9082-9092.	3.5	12
105	Distinct Plasmonic Manifestation on Gold Nanorods Induced by the Spatial Perturbation of Small Gold Nanospheres. Nano Letters, 2012, 12, 1424-1430.	9.1	106
106	Plasmonic–Molecular Resonance Coupling: Plasmonic Splitting versus Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 14088-14095.	3.1	85
107	Fano Resonance in (Gold Core)â^'(Dielectric Shell) Nanostructures without Symmetry Breaking. Small, 2012, 8, 1503-1509.	10.0	63
108	Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. Journal of Physical Chemistry Letters, 2012, 3, 191-202.	4.6	388

#	Article	IF	CITATIONS
109	Plasmonic Percolation: Plasmon-Manifested Dielectric-to-Metal Transition. ACS Nano, 2012, 6, 7162-7171.	14.6	89
110	"Shipâ€inâ€aâ€Bottle―Growth of Noble Metal Nanostructures. Advanced Functional Materials, 2012, 22, 4526-4532.	14.9	77
111	Unraveling the Evolution and Nature of the Plasmons in (Au Core)–(Ag Shell) Nanorods. Advanced Materials, 2012, 24, OP200-7.	21.0	225
112	Porous Singleâ€Crystalline Palladium Nanoparticles with High Catalytic Activities. Angewandte Chemie - International Edition, 2012, 51, 4872-4876.	13.8	206
113	Plasmon-Controlled Förster Resonance Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 8287-8296.	3.1	96
114	CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils. Nanoscale, 2012, 4, 4447.	5.6	22
115	A Gold Nanocrystal/Poly(dimethylsiloxane) Composite for Plasmonic Heating on Microfluidic Chips. Advanced Materials, 2012, 24, 94-98.	21.0	88
116	Refractive Index Sensitivities of Noble Metal Nanocrystals: The Effects of Multipolar Plasmon Resonances and the Metal Type. Journal of Physical Chemistry C, 2011, 115, 7997-8004.	3.1	113
117	Effect of the Dielectric Properties of Substrates on the Scattering Patterns of Gold Nanorods. ACS Nano, 2011, 5, 4865-4877.	14.6	87
118	Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide. Journal of Materials Chemistry, 2011, 21, 11537.	6.7	26
119	Observation of the Fano Resonance in Gold Nanorods Supported on High-Dielectric-Constant Substrates. ACS Nano, 2011, 5, 6754-6763.	14.6	124
120	Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. Nanoscale, 2011, 3, 3849.	5.6	93
121	Plasmonic Goldâ ``Superparamagnetic Hematite Heterostructures. Langmuir, 2011, 27, 5071-5075.	3.5	38
122	Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society, 2011, 133, 1106-1111.	13.7	287
123	Experimental Evidence of Plasmophores: Plasmon-Directed Polarized Emission from Gold Nanorod–Fluorophore Hybrid Nanostructures. Nano Letters, 2011, 11, 2296-2303.	9.1	135
124	Universal Scaling and Fano Resonance in the Plasmon Coupling between Gold Nanorods. ACS Nano, 2011, 5, 5976-5986.	14.6	119
125	Plasmon–molecule interactions. Nano Today, 2010, 5, 494-505.	11.9	193
126	Heteroepitaxial Growth of Core–Shell and Core–Multishell Nanocrystals Composed of Palladium and Gold. Small, 2010, 6, 2566-2575.	10.0	94

#	Article	IF	CITATIONS
127	Resonanceâ€Couplingâ€Based Plasmonic Switches. Small, 2010, 6, 2514-2519.	10.0	62
128	Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals. Small, 2010, 6, 2272-2280.	10.0	505
129	Observing Plasmonicâ ``Molecular Resonance Coupling on Single Gold Nanorods. Nano Letters, 2010, 10, 77-84.	9.1	180
130	Hydrothermal transformation from Au core–sulfide shell to Au nanoparticle-decorated sulfide hybrid nanostructures. Nanoscale, 2010, 2, 1650.	5.6	24
131	Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres. ACS Nano, 2010, 4, 6565-6572.	14.6	33
132	High-Photoluminescence-Yield Gold Nanocubes: For Cell Imaging and Photothermal Therapy. ACS Nano, 2010, 4, 113-120.	14.6	233
133	Angle- and Energy-Resolved Plasmon Coupling in Gold Nanorod Dimers. ACS Nano, 2010, 4, 3053-3062.	14.6	158
134	Effects of Dyes, Gold Nanocrystals, pH, and Metal Ions on Plasmonic and Molecular Resonance Coupling. Journal of the American Chemical Society, 2010, 132, 4806-4814.	13.7	97
135	A General Approach to the Synthesis of Gold–Metal Sulfide Core–Shell and Heterostructures. Angewandte Chemie - International Edition, 2009, 48, 2881-2885.	13.8	191
136	Plasmon Coupling in Clusters Composed of Twoâ€Dimensionally Ordered Gold Nanocubes. Small, 2009, 5, 2111-2119.	10.0	119
137	Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society, 2009, 131, 16350-16351.	13.7	357
138	Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength. Journal of Physical Chemistry C, 2009, 113, 17691-17697.	3.1	130
139	Curvature-Directed Assembly of Gold Nanocubes, Nanobranches, and Nanospheres. Langmuir, 2009, 25, 1692-1698.	3.5	80
140	Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods. Nano Letters, 2009, 9, 3896-3903.	9.1	388
141	pH ontrolled Reversible Assembly and Disassembly of Gold Nanorods. Small, 2008, 4, 1287-1292.	10.0	256
142	Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation. Angewandte Chemie - International Edition, 2008, 47, 9685-9690.	13.8	244
143	Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir, 2008, 24, 5233-5237.	3.5	1,126
144	Coupling between Molecular and Plasmonic Resonances in Freestanding Dyeâ^'Gold Nanorod Hybrid Nanostructures. Journal of the American Chemical Society, 2008, 130, 6692-6693.	13.7	179

#	Article	IF	CITATIONS
145	Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films. Journal of Physical Chemistry C, 2008, 112, 18895-18903.	3.1	52
146	Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods. ACS Nano, 2008, 2, 677-686.	14.6	527
147	Optical Fiber-Excited Surface Plasmon Resonance Spectroscopy of Single and Ensemble Gold Nanorods. Journal of Physical Chemistry C, 2008, 112, 8105-8109.	3.1	33
148	Glutathione- and Cysteine-Induced Transverse Overgrowth on Gold Nanorods. Journal of the American Chemical Society, 2007, 129, 6402-6404.	13.7	178
149	Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chemical Communications, 2007, , 1816.	4.1	146
150	One-Step Synthesis of Large-Aspect-Ratio Single-Crystalline Gold Nanorods by Using CTPAB and CTBAB Surfactants. Chemistry - A European Journal, 2007, 13, 2929-2936.	3.3	94
151	Growth of Gold Bipyramids with Improved Yield and Their Curvatureâ€Directed Oxidation. Small, 2007, 3, 2103-2113.	10.0	203
152	Selective Shortening of Single-Crystalline Gold Nanorods by Mild Oxidation. Journal of the American Chemical Society, 2006, 128, 5352-5353.	13.7	305
153	Growth of Gold Nanorods and Bipyramids Using CTEAB Surfactant. Journal of Physical Chemistry B, 2006, 110, 16377-16383.	2.6	127
154	Composite mesostructures by nano-confinement. Nature Materials, 2004, 3, 816-822.	27.5	626
155	Synthesis of Mesoporous Silica Nanofibers with Controlled Pore Architectures. Chemistry of Materials, 2004, 16, 5169-5181.	6.7	70
156	Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays. Nano Letters, 2004, 4, 2337-2342.	9.1	205
157	Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires. Journal of Physical Chemistry B, 2002, 106, 4036-4039.	2.6	215
158	Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415, 617-620.	27.8	2,562
159	Diameter-controlled synthesis of single-crystal silicon nanowires. Applied Physics Letters, 2001, 78, 2214-2216.	3.3	1,078
160	Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires. Journal of Physical Chemistry B, 2001, 105, 4062-4064.	2.6	265
161	Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409, 66-69.	27.8	3,256
162	Synthesis and optical properties of gallium arsenide nanowires. Applied Physics Letters, 2000, 76, 1116-1118.	3.3	279

#	Article	IF	CITATIONS
163	Plasmonâ€Enhanced, Selfâ€Traced Nanomotors on the Surface of Silicon. Angewandte Chemie, 0, , .	2.0	ο