Shikha Garg

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11025387/shikha-garg-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39	1,180	17	34
papers	citations	h-index	g-index
42 ext. papers	1,454 ext. citations	8.6 avg, IF	4.79 L-index

#	Paper	IF	Citations
39	Comparison of Performance of Conventional Ozonation and Heterogeneous Catalytic Ozonation Processes in Phosphate- and Bicarbonate-Buffered Solutions. <i>ACS ES&T Engineering</i> , 2022 , 2, 210-221		O
38	Influence of cations on As(III) removal from simulated groundwaters by double potential step chronoamperometry (DPSC) employing polyvinylferrocene (PVF) functionalized electrodes. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127472	12.8	О
37	Influence of salinity on the heterogeneous catalytic ozonation process: Implications to treatment of high salinity wastewater. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127255	12.8	1
36	Kinetic Modeling-Assisted Mechanistic Understanding of the Catalytic Ozonation Process Using Cu-Al Layered Double Hydroxides and Copper Oxide Catalysts. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 13274-13285	10.3	1
35	Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters. <i>Environmental Science & Environmental Science</i> & Technology, 2020 , 54, 6771-6780	10.3	11
34	Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters. <i>Environmental Science & Environmental Science & Environment</i>	2343	11
33	Mechanistic insights into the catalytic ozonation process using iron oxide-impregnated activated carbon. <i>Water Research</i> , 2020 , 177, 115785	12.5	31
32	Copper Inhibition of Triplet-Sensitized Phototransformation of Phenolic and Amine Contaminants. <i>Environmental Science & Environmental Science & Envir</i>	10.3	6
31	Selective Arsenic Removal from Groundwaters Using Redox-Active Polyvinylferrocene-Functionalized Electrodes: Role of Oxygen. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 12081-12091	10.3	12
30	Impact of light and Suwanee River Fulvic Acid on O and HO Mediated Oxidation of Silver Nanoparticles in Simulated Natural Waters. <i>Environmental Science & Environmental Scien</i>	9 ¹ 8 ^{0.3}	15
29	Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity. <i>Environmental Science: Nano</i> , 2019 , 6, 1674-1687	7.1	22
28	Modified Double Potential Step Chronoamperometry (DPSC) Method for As(III) Electro-oxidation and Concomitant As(V) Adsorption from Groundwaters. <i>Environmental Science & Environmental Science & Envi</i>	10.3	12
27	Is Superoxide-Mediated Fe(III) Reduction Important in Sunlit Surface Waters?. <i>Environmental Science & Environmental Science &</i>	10.3	12
26	Copper Inhibition of Triplet-Induced Reactions Involving Natural Organic Matter. <i>Environmental Science & Environmental Scienc</i>	10.3	13
25	Effects of Goodld Buffers and pH on the Structural Transformation of Zero Valent Iron and the Oxidative Degradation of Contaminants. <i>Environmental Science & Environmental Sc</i>	10.3	25
24	In vitro characterization of reactive oxygen species (ROS) generation by the commercially available MesosilverIdietary supplement. <i>Environmental Science: Nano</i> , 2018 , 5, 2686-2698	7.1	4
23	Impact of pH on Iron Redox Transformations in Simulated Freshwaters Containing Natural Organic Matter. <i>Environmental Science & Environmental Science </i>	10.3	18

(2011-2018)

22	Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation. <i>Environmental Science & Environmental Science & Environment</i>	10.3	2
21	Redox Transformations of Iron in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa under Conditions Typical of Natural Waters. <i>Environmental Science & amp; Technology</i> , 2017 , 51, 3287-3297	10.3	12
20	Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	6
19	Iron Redox Transformations in the Presence of Natural Organic Matter: Effect of Calcium. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	9
18	Light-Mediated Reactive Oxygen Species Generation and Iron Redox Transformations in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa. <i>Environmental Science & Environmental Science</i>	10.3	15
17	Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity. <i>Environmental Science & Environmental Science & Environment</i>	10.3	46
16	Chlorine-Mediated Regeneration of Semiconducting AgCl(s) Following Light-Induced Ag0 Formation: Implications to Contaminant Degradation. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 5988-5	396	14
15	Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling. <i>Journal of Colloid and Interface Science</i> , 2015 , 446, 366-72	9.3	4
14	Mechanistic insights into iron redox transformations in the presence of natural organic matter: Impact of pH and light. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 165, 14-34	5.5	30
13	Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	76
12	Mechanistic Insights into Free Chlorine and Reactive Oxygen Species Production on Irradiation of Semiconducting Silver Chloride Particles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 26659-26670	3.8	20
11	Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights. <i>Environmental Science & Environmental Science & Environme</i>	10.3	27
10	Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions. <i>Environmental Science & Environmental & E</i>	10.3	44
9	H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. <i>Langmuir</i> , 2012 , 28, 10266-75	4	127
8	Silver Nanoparticle R eactive Oxygen Species Interactions: Application of a Charging D ischarging Model. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5461-5468	3.8	158
7	Photochemical production of superoxide and hydrogen peroxide from natural organic matter. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 4310-4320	5.5	109
6	Superoxide-mediated formation and charging of silver nanoparticles. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 1428-34	10.3	130
5	Pathways Contributing to the Formation and Decay of Ferrous Iron in Sunlit Natural Waters. <i>ACS Symposium Series</i> , 2011 , 153-176	0.4	6

4	Superoxide mediated reduction of organically complexed iron(III): comparison of non-dissociative and dissociative reduction pathways. <i>Environmental Science & Environmental S</i>	10.3	50
3	Production of reactive oxygen species on photolysis of dilute aqueous quinone solutions. <i>Photochemistry and Photobiology</i> , 2007 , 83, 904-13	3.6	45
2	Iron uptake by the ichthyotoxic Chattonella marina (Raphidophyceae): impact of superoxide generation1. <i>Journal of Phycology</i> , 2007 , 43, 978-991	3	37
1	Superoxide-mediated reduction of organically complexed iron(III): Impact of pH and competing cations (Ca2+). <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 5620-5634	5.5	17