
Rupam Kumar Bhunia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1102468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ï‰-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Plant Cell Reports, 2016, 35, 213-226.	2.8	27
2	Metabolic engineering of fatty acid biosynthetic pathway in sesame (Sesamum indicum L.): assembling tools to develop nutritionally desirable sesame seed oil. Phytochemistry Reviews, 2016, 15, 799-811.	3.1	23
3	Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L Molecular Biology Reports, 2019, 46, 2577-2593.	1.0	22
4	Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. Phytochemistry, 2020, 180, 112538.	1.4	22
5	Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Molecular Biology, 2014, 86, 351-365.	2.0	19
6	Analysis of Fatty Acid and Lignan Composition of Indian Germplasm of Sesame to Evaluate Their Nutritional Merits. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 65-76.	0.8	18
7	Polysaccharides from Dolichos biflorus Linn and Trachyspermum ammi Linn seeds: isolation, characterization and remarkable antimicrobial activity. Chemistry Central Journal, 2017, 11, 118.	2.6	16
8	A Holistic View of the Genetic Factors Involved in Triggering Hydrolytic and Oxidative Rancidity of Rice Bran Lipids. Food Reviews International, 2023, 39, 441-466.	4.3	14
9	MicroRNAs as potential targets for improving rice yield via plant architecture modulation: Recent studies and future perspectives. Journal of Biosciences, 2020, 45, 1.	0.5	12
10	Anthocyanin biofortified colored wheat modifies gut microbiota in mice. Journal of Cereal Science, 2022, 104, 103433.	1.8	12
11	Combination of TRP channel dietary agonists induces energy expending and glucose utilizing phenotype in HFD-fed mice. International Journal of Obesity, 2022, 46, 153-161.	1.6	11
12	pH-Triggered, Synbiotic Hydrogel Beads for <i>In Vivo</i> Therapy of Iron Deficiency Anemia and Reduced Inflammatory Response. ACS Applied Bio Materials, 2021, 4, 7467-7484.	2.3	10
13	Combined use of cutinase and high-resolution mass-spectrometry to query the molecular architecture of cutin. Plant Methods, 2018, 14, 117.	1.9	9
14	Functional characterization of two type-1 diacylglycerol acyltransferase (DGAT1) genes from rice (Oryza sativa) embryo restoring the triacylglycerol accumulation in yeast. Plant Molecular Biology, 2021, 105, 247-262.	2.0	9
15	Efficient Genetic Transformation of Rice for CRISPR/Cas9 Mediated Genome-Editing and Stable Overexpression Studies: A Case Study on Rice Lipase 1 and Galactinol Synthase Encoding Genes. Agronomy, 2022, 12, 179.	1.3	9
16	Identification and molecular characterization of rice bran-specific lipases. Plant Cell Reports, 2021, 40, 1215-1228.	2.8	8
17	Production of human milk fat substitute by engineered strains of Yarrowia lipolytica. Metabolic Engineering Communications, 2022, 14, e00192.	1.9	8
18	Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice. Journal of Experimental Botany, 2022, 73, 5033-5051.	2.4	8

Rupam Kumar Bhunia

#	Article	IF	CITATIONS
19	Identification and functional characterization of two acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) genes from forage sorghum (Sorghum bicolor) embryo. Phytochemistry, 2020, 176, 112405.	1.4	7
20	Characterization of oleosin genes from forage sorghum in Arabidopsis and yeast reveals their role in storage lipid stability. Planta, 2021, 254, 97.	1.6	7
21	Metabolic engineering of oleaginous yeasts to enhance single cell oil production. Journal of Food Process Engineering, 2022, 45, e13634.	1.5	6
22	Diverting phenylpropanoid pathway flux from sinapine to produce industrially useful 4-vinyl derivatives of hydroxycinnamic acids in Brassicaceous oilseeds. Metabolic Engineering, 2022, 70, 196-205.	3.6	6
23	A native promoter–gene fusion created by CRISPR/Cas9â€mediated genomic deletion offers a transgeneâ€free method to drive oil accumulation in leaves. FEBS Letters, 2022, 596, 1865-1870.	1.3	6
24	Simultaneous fermentation of glucose and xylose by using co-culture of S. cerevisiae and a potential robust pentose fermenting fungi (Fusarium incarnatum). Biomass Conversion and Biorefinery, 2023, 13, 8089-8100.	2.9	5
25	Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects. Recent Patents on Biotechnology, 2016, 10, 12-29.	0.4	4
26	Wsi18 promoter from wild rice genotype, Oryza nivara, shows enhanced expression under soil water stress in contrast to elite cultivar, IR20. Journal of Plant Biochemistry and Biotechnology, 2017, 26, 14-26.	0.9	4
27	Tailoring Triacylglycerol Biosynthetic Pathway in Plants for Biofuel Production. , 2019, , 41-60.		4
28	Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects. Recent Patents on Biotechnology, 2016, 10, 12-29.	0.4	1