
Marie Maumus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11023837/publications.pdf Version: 2024-02-01

MADIE MALIMUS

#	Article	IF	CITATIONS
1	Controlled Silylation of Polysaccharides: Attractive Building Blocks for Biocompatible Foams and Cell-Laden Hydrogels. ACS Applied Polymer Materials, 2022, 4, 4087-4097.	4.4	2
2	miR-155 Contributes to the Immunoregulatory Function of Human Mesenchymal Stem Cells. Frontiers in Immunology, 2021, 12, 624024.	4.8	7
3	A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering. Gels, 2021, 7, 73.	4.5	11
4	Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. International Journal of Molecular Sciences, 2021, 22, 6837.	4.1	9
5	Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p. Journal of Autoimmunity, 2021, 121, 102660.	6.5	29
6	Extracellular vesicles from mesenchymal stromal cells: Therapeutic perspectives for targeting senescence in osteoarthritis. Advanced Drug Delivery Reviews, 2021, 175, 113836.	13.7	27
7	Lung Fibrosis Is Improved by Extracellular Vesicles from IFNÎ ³ -Primed Mesenchymal Stromal Cells in Murine Systemic Sclerosis. Cells, 2021, 10, 2727.	4.1	12
8	Neuromedin B promotes chondrocyte differentiation of mesenchymal stromal cells via calcineurin and calcium signaling. Cell and Bioscience, 2021, 11, 183.	4.8	5
9	TGFBI secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extracellular vesicles. Biomaterials, 2020, 226, 119544.	11.4	53
10	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Opportunities and Challenges for Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 997.	4.1	94
11	Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 107.	3.7	60
12	Inorganic Sol–Gel Polymerization for Hydrogel Bioprinting. ACS Omega, 2020, 5, 2640-2647.	3.5	13
13	Biocompatible Glycineâ€Assisted Catalysis of the Solâ€Gel Process: Development of Cellâ€Embedded Hydrogels. ChemPlusChem, 2019, 84, 1720-1729.	2.8	13
14	Mesenchymal Stem Cell-Based Therapy of Osteoarthritis. , 2019, , 87-109.		2
15	Fibrosis Development in HOCI-Induced Systemic Sclerosis: A Multistage Process Hampered by Mesenchymal Stem Cells. Frontiers in Immunology, 2018, 9, 2571.	4.8	27
16	iNOS Activity Is Required for the Therapeutic Effect of Mesenchymal Stem Cells in Experimental Systemic Sclerosis. Frontiers in Immunology, 2018, 9, 3056.	4.8	16
17	Contribution of microRNAs to the immunosuppressive function of mesenchymal stem cells. Biochimie, 2018, 155, 109-118.	2.6	17
18	Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 2018, 8, 1399-1410.	10.0	347

Marie Maumus

#	Article	IF	CITATIONS
19	Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis. Clinical Reviews in Allergy and Immunology, 2017, 52, 234-259.	6.5	98
20	Pathogenic or Therapeutic Extracellular Vesicles in Rheumatic Diseases: Role of Mesenchymal Stem Cell-Derived Vesicles. International Journal of Molecular Sciences, 2017, 18, 889.	4.1	76
21	Thrombospondin-1 Partly Mediates the Cartilage Protective Effect of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis. Frontiers in Immunology, 2017, 8, 1638.	4.8	31
22	Utility of a Mouse Model of Osteoarthritis to Demonstrate Cartilage Protection by IFNÎ ³ -Primed Equine Mesenchymal Stem Cells. Frontiers in Immunology, 2016, 7, 392.	4.8	30
23	Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars. PLoS ONE, 2016, 11, e0156161.	2.5	55
24	Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. Journal of Autoimmunity, 2016, 70, 31-39.	6.5	98
25	Médecine régénérative de la gonarthroseÂ: mythe ou réalitéÂ?. Revue Du Rhumatisme Monographi 83, 162-165.	es, 2016, 0.0	0
26	Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opinion on Biological Therapy, 2016, 16, 33-42.	3.1	73
27	Survival and Biodistribution of Xenogenic Adipose Mesenchymal Stem Cells Is Not Affected by the Degree of Inflammation in Arthritis. PLoS ONE, 2015, 10, e0114962.	2.5	73
28	Adiposeâ€Derived Mesenchymal Stem Cells Exert Antiinflammatory Effects on Chondrocytes and Synoviocytes From Osteoarthritis Patients Through Prostaglandin E ₂ . Arthritis and Rheumatism, 2013, 65, 1271-1281.	6.7	205
29	Mesenchymal stem cells in regenerative medicine applied toÂrheumatic diseases: Role of secretome and exosomes. Biochimie, 2013, 95, 2229-2234.	2.6	214
30	Longâ€Term Detection of Human Adiposeâ€Derived Mesenchymal Stem Cells After Intraarticular Injection in SCID Mice. Arthritis and Rheumatism, 2013, 65, 1786-1794.	6.7	106
31	Native Adipose Stromal Cells Egress from Adipose Tissue In Vivo: Evidence During Lymph Node Activation. Stem Cells, 2013, 31, 1309-1320.	3.2	49
32	Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Research, 2013, 11, 834-844.	0.7	143
33	Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Research and Therapy, 2011, 2, 14.	5.5	145
34	Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors. Diabetes, 2010, 59, 2513-2521.	0.6	140
35	Evidence of <i>in Situ</i> Proliferation of Adult Adipose Tissue-Derived Progenitor Cells: Influence of Fat Mass Microenvironment and Growth. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4098-4106.	3.6	107
36	Chemotaxis and Differentiation of Human Adipose Tissue CD34+/CD31â^'Progenitor Cells: Role of Stromal Derived Factor-1 Released by Adipose Tissue Capillary Endothelial Cells. Stem Cells, 2007, 25, 2269-2276.	3.2	100