
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11023481/publications.pdf Version: 2024-02-01

Δημαλόμα Ραν

#	Article	IF	CITATIONS
1	Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation. Journal of Allergy and Clinical Immunology, 2022, 149, 113-124.e7.	2.9	17
2	Early life exposure to house dust mite allergen prevents experimental allergic asthma requiring mitochondrial H2O2. Mucosal Immunology, 2022, 15, 154-164.	6.0	1
3	High-dimensional profiling clusters asthma severity by lymphoid and non-lymphoid status. Cell Reports, 2021, 35, 108974.	6.4	32
4	A no-Wnt situation for alveolar macrophage self-renewal. Immunity, 2021, 54, 1099-1101.	14.3	1
5	Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight, 2021, 6, .	5.0	12
6	Immune responses and exacerbations in severe asthma. Current Opinion in Immunology, 2021, 72, 34-42.	5.5	10
7	Using ICLite for deconvolution of bulk transcriptional data from mixed cell populations. STAR Protocols, 2021, 2, 100847.	1.2	1
8	Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation. Journal of Clinical Investigation, 2021, 131, .	8.2	31
9	Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Replication in a Chimeric Antigen Receptor-Modified T-Cell Therapy Recipient: A Case Study. Clinical Infectious Diseases, 2021, 73, e815-e821.	5.8	113
10	People critically ill with COVID-19 exhibit peripheral immune profiles predictive of mortality and reflective of SARS-CoV-2 lung viral burden. Cell Reports Medicine, 2021, 2, 100476.	6.5	11
11	Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma?. Physiological Reviews, 2020, 100, 983-1017.	28.8	62
12	Interleukin-22 Inhibits Respiratory Syncytial Virus Production by Blocking Virus-Mediated Subversion of Cellular Autophagy. IScience, 2020, 23, 101256.	4.1	23
13	Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the lung. Journal of Experimental Medicine, 2020, 217, .	8.5	27
14	Expression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype. Journal of Allergy and Clinical Immunology, 2020, 146, 315-324.e7.	2.9	90
15	Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight, 2020, 5, .	5.0	39
16	Platelets inhibit apoptotic lung epithelial cell death and protect mice against infection-induced lung injury. Blood Advances, 2019, 3, 432-445.	5.2	19
17	Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight, 2019, 4, .	5.0	13
18	Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight, 2018, 3, .	5.0	36

#	Article	IF	CITATIONS
19	GATA-3. , 2018, , 2027-2040.		0
20	The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nature Communications, 2017, 8, 13944.	12.8	94
21	Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends in Immunology, 2017, 38, 942-954.	6.8	331
22	mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science, 2017, 357, 1014-1021.	12.6	98
23	IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight, 2017, 2, .	5.0	64
24	Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight, 2017, 2, .	5.0	86
25	Respiratory syncytial virus infection of newborn CX3CR1-deficent mice induces a pathogenic pulmonary innate immune response. JCI Insight, 2017, 2, .	5.0	12
26	LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. Journal of Cell Science, 2016, 129, 51-64.	2.0	19
27	Current concepts of severe asthma. Journal of Clinical Investigation, 2016, 126, 2394-2403.	8.2	188
28	Mitochondrial H2O2 in Lung Antigen-Presenting Cells Blocks NF-ήB Activation to Prevent Unwarranted Immune Activation. Cell Reports, 2016, 15, 1700-1714.	6.4	18
29	CD36 Provides Host Protection Against <i>Klebsiella pneumoniae</i> Intrapulmonary Infection by Enhancing Lipopolysaccharide Responsiveness and Macrophage Phagocytosis. Journal of Infectious Diseases, 2016, 214, 1865-1875.	4.0	28
30	Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE, 2016, 11, e0159329.	2.5	51
31	GATA-3. , 2016, , 1-14.		0
32	IL-27 and type 2 immunity in asthmatic patients: Association with severity, CXCL9, and signal transducer and activator of transcription signaling. Journal of Allergy and Clinical Immunology, 2015, 135, 386-394.e5.	2.9	38
33	Cutting Edge: Dual Function of PPARγ in CD11c+ Cells Ensures Immune Tolerance in the Airways. Journal of Immunology, 2015, 195, 431-435.	0.8	31
34	Evolving Concepts of Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 660-668.	5.6	214
35	Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2015, 136, 747-756.e4.	2.9	80
36	Emerging molecular phenotypes of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L130-L140.	2.9	116

#	Article	IF	CITATIONS
37	High IFN-Î ³ and low SLPI mark severe asthma in mice and humans. Journal of Clinical Investigation, 2015, 125, 3037-3050.	8.2	300
38	Dendritic cell c-kit signaling and adaptive immunity. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 7-12.	2.3	27
39	Cutting Edge: MMP-9 Inhibits IL-23p19 Expression in Dendritic Cells by Targeting Membrane Stem Cell Factor Affecting Lung IL-17 Response. Journal of Immunology, 2014, 192, 5471-5475.	0.8	22
40	E3 Ligase Subunit Fbxo15 and PINK1 Kinase Regulate Cardiolipin Synthase 1 Stability and Mitochondrial Function in Pneumonia. Cell Reports, 2014, 7, 476-487.	6.4	45
41	Biology of Lymphocytes. , 2014, , 203-214.		4
42	Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes. Journal of Allergy and Clinical Immunology, 2013, 131, 1117-1129.e5.	2.9	66
43	The IL17A and IL17F loci have divergent histone modifications and are differentially regulated by prostaglandin E2 in Th17 cells. Cytokine, 2013, 64, 404-412.	3.2	23
44	Cutting Edge: Inhaled Antigen Upregulates Retinaldehyde Dehydrogenase in Lung CD103+ but Not Plasmacytoid Dendritic Cells To Induce Foxp3 De Novo in CD4+ T Cells and Promote Airway Tolerance. Journal of Immunology, 2013, 191, 25-29.	0.8	115
45	Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Frontiers in Cellular and Infection Microbiology, 2013, 3, 52.	3.9	95
46	Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset. Thorax, 2012, 67, 1061-1066.	5.6	88
47	G Protein Beta/Gamma. , 2012, , 702-710.		0
48	GC-A. , 2012, , 769-769.		0
49	G Protein Alpha Transducin. , 2012, , 698-702.		0
50	Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nature Medicine, 2012, 18, 1525-1530.	30.7	206
51	LPS-induced CD11b+Gr1intF4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. International Immunopharmacology, 2011, 11, 827-832.	3.8	31
52	Rapid Host Defense against Aspergillus fumigatus Involves Alveolar Macrophages with a Predominance of Alternatively Activated Phenotype. PLoS ONE, 2011, 6, e15943.	2.5	107
53	Prostaglandin E2 and IL-23 plus IL-1Î ² Differentially Regulate the Th1/Th17 Immune Response of Human CD161+CD4+ Memory T Cells. Clinical and Translational Science, 2011, 4, 268-273.	3.1	23
54	Lung myeloid-derived suppressor cells and regulation of inflammation. Immunologic Research, 2011, 50, 153-158.	2.9	28

#	Article	IF	CITATIONS
55	TNF-α from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5360-5365.	7.1	112
56	Signaling of câ€kit in dendritic cells influences adaptive immunity. Annals of the New York Academy of Sciences, 2010, 1183, 104-122.	3.8	52
57	Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Journal of Clinical Investigation, 2010, 120, 3242-3254.	8.2	129
58	Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 595-603.	2.9	155
59	STAT6 Activation Confers upon T Helper Cells Resistance to Suppression by Regulatory T Cells. Journal of Immunology, 2009, 183, 155-163.	0.8	51
60	Hepatocyte Growth Factor Inhibits Epithelial to Myofibroblast Transition in Lung Cells via Smad7. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 643-653.	2.9	120
61	Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nature Medicine, 2008, 14, 565-573.	30.7	191
62	Emerging functions of c-kit and its ligand stem cell factor in dendritic cells. Cell Cycle, 2008, 7, 2826-2832.	2.6	62
63	TH17 Cells Mediate Steroid-Resistant Airway Inflammation and Airway Hyperresponsiveness in Mice. Journal of Immunology, 2008, 181, 4089-4097.	0.8	677
64	Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6690-6695.	7.1	126
65	A Role for Indoleamine 2,3â€Đioxygenase in Lung Dendritic Cell Activation in Response to Allergens Impacting Allergic Airways Disease. FASEB Journal, 2008, 22, 670.9.	0.5	0
66	A critical role for VEGF secreted by Dendritic cells (DCs) in priming T helper 2 (Th2) development in response to specific stimuli. FASEB Journal, 2008, 22, 670.8.	0.5	1
67	Deficient SOCS3 expression in CD4 ⁺ CD25 ⁺ FoxP3 ⁺ regulatory T cells and SOCS3â€mediated suppression of Treg function. European Journal of Immunology, 2007, 37, 2082-2089.	2.9	72
68	Are there reasons why adult asthma is more common in females?. Current Allergy and Asthma Reports, 2007, 7, 143-150.	5.3	151
69	Distinct Responses of Lung and Spleen Dendritic Cells to the TLR9 Agonist CpG Oligodeoxynucleotide. Journal of Immunology, 2006, 177, 2373-2383.	0.8	50
70	Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7777-7782.	7.1	109
71	Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-Â. Journal of Clinical Investigation, 2006, 116, 996-1004.	8.2	162
72	CD25+ T cells and regulation of allergen-induced responses. Current Allergy and Asthma Reports, 2005, 5, 35-41.	5.3	28

#	Article	IF	CITATIONS
73	T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17113-17118.	7.1	133
74	Dynamics of Dendritic Cell Phenotype and Interactions with CD4+ T Cells in Airway Inflammation and Tolerance. Journal of Immunology, 2005, 174, 854-863.	0.8	96
75	Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3. Journal of Clinical Investigation, 2004, 114, 28-38.	8.2	227
76	Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3. Journal of Clinical Investigation, 2004, 114, 28-38.	8.2	155
77	An important regulatory role for CD4+CD8ÂÂ T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5324-5329.	7.1	187
78	Cytokines and asthma. , 2003, , 1313-1334.		1
79	Transforming Growth Factor β Blocks Tec Kinase Phosphorylation, Ca2+ Influx, and NFATc Translocation Causing Inhibition of T Cell Differentiation. Journal of Experimental Medicine, 2003, 197, 1689-1699.	8.5	141
80	Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6098-6103.	7.1	126
81	T-Bet Expression and Failure of GATA-3 Cross-Regulation Lead to Default Production of IFN-γ by γδT Cells. Journal of Immunology, 2002, 168, 1566-1571.	0.8	101
82	Interleukin-13 Mediates a Fundamental Pathway for Airway Epithelial Mucus Induced by CD4 T Cells and Interleukin-9. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 593-602.	2.9	171
83	GATA-3: A Th2-Selective Target. , 2001, 31, 222-225.		2
84	A critical role for NF-κB in Gata3 expression and TH2 differentiation in allergic airway inflammation. Nature Immunology, 2001, 2, 45-50.	14.5	484
85	Response to 'Specificity of SN50 for NF-κB?'. Nature Immunology, 2001, 2, 471-472.	14.5	21
86	Activated Akt Protects the Lung from Oxidant-Induced Injury and Delays Death of Mice. Journal of Experimental Medicine, 2001, 193, 545-550.	8.5	88
87	T-helper type 2 cell-directed therapy for asthma. , 2000, 88, 187-196.		23
88	Inducible lung-specific expression of RANTES: preferential recruitment of neutrophils. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L658-L666.	2.9	68
89	Dominance of IL-12 Over IL-4 in γδT Cell Differentiation Leads to Default Production of IFN-γ: Failure to Down-Regulate IL-12 Receptor β2-Chain Expression. Journal of Immunology, 2000, 164, 3056-3064.	0.8	80
90	Cyclic AMP Activates p38 Mitogen-Activated Protein Kinase in Th2 Cells: Phosphorylation of GATA-3 and Stimulation of Th2 Cytokine Gene Expression. Journal of Immunology, 2000, 165, 5597-5605.	0.8	129

#	Article	IF	CITATIONS
91	Upregulation of the transcription factor GATA-3 in upper airway mucosa after in vivo and in vitro allergen challenge. Journal of Allergy and Clinical Immunology, 2000, 105, 1146-1152.	2.9	56
92	The Classic Steroid Hormone Receptors and $ER\hat{l}^2$, the Novel Estrogen Receptor. , 2000, , 247-258.		0
93	Inhibition of Allergic Inflammation in a Murine Model of Asthma by Expression of a Dominant-Negative Mutant of GATA-3. Immunity, 1999, 11, 473-482.	14.3	298
94	Gene expression of the GATA-3 transcription factor is increased in atopic asthma. Journal of Allergy and Clinical Immunology, 1999, 103, 215-222.	2.9	189
95	Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. Journal of Clinical Investigation, 1999, 104, 985-993.	8.2	254
96	Essential Role of Nuclear Factor κB in the Induction of Eosinophilia in Allergic Airway Inflammation. Journal of Experimental Medicine, 1998, 188, 1739-1750.	8.5	303
97	Selective Up-regulation of Cytokine-induced RANTES Gene Expression in Lung Epithelial Cells by Overexpression of Il [®] BR. Journal of Biological Chemistry, 1997, 272, 20191-20197.	3.4	33
98	Transcription Factor GATA-3 Is Differentially Expressed in Murine Th1 and Th2 Cells and Controls Th2-specific Expression of the Interleukin-5 Gene. Journal of Biological Chemistry, 1997, 272, 21597-21603.	3.4	571
99	Repression of interleukinâ€6 gene expression by 17βâ€estradiol:. FEBS Letters, 1997, 409, 79-85.	2.8	230
100	Activation of the Interleukin-5 Promoter by cAMP in Murine EL-4 Cells Requires the GATA-3 and CLEO Elements. Journal of Biological Chemistry, 1995, 270, 24548-24555.	3.4	117
101	Cloning of a Differentially Expressed lκB-related Protein. Journal of Biological Chemistry, 1995, 270, 10680-10685.	3.4	37
102	Regulation of Interleukinâ€6 Gene Expression by Steroidsa. Annals of the New York Academy of Sciences, 1995, 762, 79-88.	3.8	38
103	Glucocorticoids. Science, 1995, 270, 1103-1103.	12.6	1
104	Expression and function of interleukin-6 in epithelial cells. Journal of Cellular Biochemistry, 1991, 45, 327-334.	2.6	101
105	Regulation of Expression of Interleukinâ€6. Annals of the New York Academy of Sciences, 1989, 557, 353-362.	3.8	76