Shengke Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11020749/publications.pdf

Version: 2024-02-01

2258059 2053705 5 41 3 5 citations h-index g-index papers 5 5 5 57 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Main Source of Microwave Loss in Transitionâ€Metalâ€Doped Ba(Zn _{1/3} Ta _{2/3})O ₃ and Ba(Zn _{1/3} Nb _{2/3})O ₃ at Cryogenic Temperatures. Journal of the American Ceramic Society, 2015, 98, 1188-1194.	3.8	17
2	Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics. Journal of the American Ceramic Society, 2017, 100, 1508-1516.	3.8	16
3	Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex. International Journal of Molecular Sciences, 2018, 19, 3532.	4.1	4
4	$\langle i \rangle$ In-situ $\langle i \rangle$ electron paramagnetic resonance studies of paramagnetic point defects in superconducting microwave resonators. Applied Physics Letters, 2016, 109, .	3.3	2
5	Low microwave loss in deposited Si and Ge thin-film dielectrics at single-photon power and low temperatures. AIP Advances, 2021, 11, .	1.3	2