Mingjun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1101716/publications.pdf

Version: 2024-02-01

1170033 1181555 14 344 9 14 citations h-index g-index papers 14 14 14 245 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Developing Al–Fe–Si alloys with high thermal stability through tuning Fe, Si contents and cooling rates. Intermetallics, 2022, 144, 107505.	1.8	13
2	Self-accommodated defect structures modifying the growth of Laves phase. Journal of Materials Science and Technology, 2021, 62, 203-213.	5 . 6	14
3	Quantified effect of sample size and gas environment on precipitation of an aged Al-Mg-Si alloy. Materials Characterization, 2021, 172, 110829.	1.9	1
4	Formation of amorphous precipitates in a corroded over-aged Al-Mg-Si alloy. Applied Surface Science, 2021, 549, 149329.	3.1	4
5	Shearing and rotation of $\hat{I}^2\hat{a}\in \hat{I}^3$ and $\hat{I}^2\hat{E}^1$ precipitates in an Al-Mg-Si alloy under tensile deformation: In-situ and ex-situ studies. Acta Materialia, 2021, 220, 117310.	3.8	46
6	Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium. Journal of Materials Science and Technology, 2020, 41, 139-148.	5.6	28
7	Quantified contribution of $\hat{l}^2\hat{a}\in^3$ and $\hat{l}^2\hat{a}\in^2$ precipitates to the strengthening of an aged Al $\hat{a}\in^4$ Mg $\hat{a}\in^4$ Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138776.	2.6	84
8	Atomic scale investigation of the crystal structure and interfaces of the Bâ \in ² precipitate in Al-Mg-Si alloys. Acta Materialia, 2020, 185, 193-203.	3.8	72
9	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:msup><mml:mrow><mml:mi>l²</mml:mi></mml:mrow><mml:mrow><mml:mtext>'needle-shape precipitate formation in Al-Mg-Si alloy: Phase field simulation and experimental verification. Computational Materials Science. 2020. 184. 109878.</mml:mtext></mml:mrow></mml:msup></mml:math>	ml:mtext>	· <mml:mtext< td=""></mml:mtext<>
10	Preparation of millimeter scale second phase particles in aluminum alloys and determination of their mechanical properties. Journal of Alloys and Compounds, 2019, 784, 68-75.	2.8	24
11	Effect of electron beam irradiation in TEM on the microstructure and composition of nanoprecipitates in Al-Mg-Si alloys. Micron, 2019, 116, 116-123.	1.1	7
12	On the atomic model of Guinier-Preston zones in Al-Mg-Si-Cu alloys. Journal of Alloys and Compounds, 2018, 745, 644-650.	2.8	18
13	Phase-field simulation of the solidified microstructure in a new commercial $6\tilde{A}-\tilde{A}-\tilde{A}-$ aluminum alloy ingot supported by experimental measurements. International Journal of Materials Research, 2018, 109, 91-98.	0.1	7
14	Effect of stamping deformation on microstructure and properties evolution of an Al–Mg–Si–Cu alloy for automotive panels. Journal of Materials Science, 2017, 52, 5569-5581.	1.7	8