## Qiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1101684/publications.pdf Version: 2024-02-01



OLANG WANG

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Carbon coated cobalt catalysts for direct synthesis of middle n-alkanes from syngas. Fuel, 2022, 327, 124889.                                                                                                                    | 6.4  | 3         |
| 2  | Theoretically Predicted CO Adsorption and Dissociation on Ru-doped Co(100) Surfaces. Applied Surface Science, 2021, 572, 151476.                                                                                                 | 6.1  | 1         |
| 3  | Equilibrium morphology evolution of FCC cobalt nanoparticle under CO and hydrogen environments.<br>Applied Surface Science, 2020, 504, 144469.                                                                                   | 6.1  | 9         |
| 4  | Theoretically predicted surface morphology of FCC cobalt nanoparticles induced by Ru promoter.<br>Catalysis Science and Technology, 2020, 10, 187-195.                                                                           | 4.1  | 9         |
| 5  | Morphology Evolution of Hcp Cobalt Nanoparticles Induced by Ru Promoter. ChemCatChem, 2020, 12, 2083-2090.                                                                                                                       | 3.7  | 7         |
| 6  | Rediscovering Tuning Product Selectivity by an Energy Descriptor: CH <sub>4</sub> Formation and<br>C <sub>1</sub> –C <sub>1</sub> Coupling on the FCC Co Surface. Journal of Physical Chemistry C, 2020,<br>124, 11040-11049.    | 3.1  | 9         |
| 7  | Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere. Nanoscale, 2019, 11, 8037-8046.                                                                                                                          | 5.6  | 18        |
| 8  | Infrared photodissociation spectroscopic investigation of TMO(CO)n+ (TM = Sc, Y, La): testing the 18-electron rule. Physical Chemistry Chemical Physics, 2019, 21, 6743-6749.                                                    | 2.8  | 9         |
| 9  | Combining covalent bonding and electrostatic attraction to achieve highly viable species with<br>ultrashort beryllium–beryllium distances: a computational design. Dalton Transactions, 2018, 47,<br>4707-4713.                  | 3.3  | 16        |
| 10 | CB <sub>3</sub> E <sub>2</sub> <sup>q</sup> ( <i>q</i> = ±1): a family of "hyparene―analogues with a planar pentacoordinate carbon. Physical Chemistry Chemical Physics, 2018, 20, 12642-12649.                                  | 2.8  | 11        |
| 11 | Insight into the structure and morphology of Run clusters on Co(111) and Co(311) surfaces. Catalysis Science and Technology, 2018, 8, 2728-2739.                                                                                 | 4.1  | 7         |
| 12 | Synergistic Inhibitory Effect of GQDs–Tramiprosate Covalent Binding on Amyloid Aggregation. ACS<br>Chemical Neuroscience, 2018, 9, 817-823.                                                                                      | 3.5  | 40        |
| 13 | Micropore blocked core–shell ZSM-22 designed <i>via</i> epitaxial growth with enhanced shape<br>selectivity and high <i>n</i> -dodecane hydroisomerization performance. Catalysis Science and<br>Technology, 2018, 8, 6407-6419. | 4.1  | 23        |
| 14 | Stabilization of beryllium-containing planar pentacoordinate carbon species through attaching hydrogen atoms. RSC Advances, 2018, 8, 36521-36526.                                                                                | 3.6  | 20        |
| 15 | M–S Multiple Bond in HMSH, H2MS, and HMS Molecules (M = B, Al, Ga): Matrix Infrared Spectra and<br>Theoretical Calculations. Journal of Physical Chemistry A, 2018, 122, 8626-8635.                                              | 2.5  | 3         |
| 16 | Crystal-Plane-Dependent Fischer–Tropsch Performance of Cobalt Catalysts. ACS Catalysis, 2018, 8,<br>9447-9455.                                                                                                                   | 11.2 | 61        |
| 17 | OMS, OM(η2-SO), and OM(η2-SO)(η2-O2S) Molecules (M = Ce, Th) with Chiral Structure: Matrix Infrared<br>Spectra and Theoretical Calculations. Journal of Physical Chemistry A, 2018, 122, 5391-5400.                              | 2.5  | 3         |
| 18 | Design and synthesis of Pt/ZSM-22 catalysts for selective formation of iso-Dodecane with branched chain at more central positions from n-Dodecane hydroisomerization. Applied Catalysis A: General, 2018, 562, 310-320.          | 4.3  | 28        |

QIANG WANG

| #  | ARTICLE                                                                                                                                                                                                                            | IF              | CITATIONS        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| 19 | Zigzag double-chain C–Be nanoribbon featuring planar pentacoordinate carbons and ribbon<br>aromaticity. Journal of Materials Chemistry C, 2017, 5, 408-414.                                                                        | 5.5             | 10               |
| 20 | High selectivity for n-dodecane hydroisomerization over highly siliceous ZSM-22 with low Pt loading.<br>Catalysis Science and Technology, 2017, 7, 5055-5068.                                                                      | 4.1             | 42               |
| 21 | Elucidating the nature and role of copper species in catalytic carbonylation of methanol to methyl acetate over copper/titania–silica mixed oxides. Catalysis Science and Technology, 2017, 7, 3511-3523.                          | 4.1             | 13               |
| 22 | Insight into the preferred formation mechanism of long-chain hydrocarbons in Fischer–Tropsch<br>synthesis on Hcp Co(10â^'11) surfaces from DFT and microkinetic modeling. Catalysis Science and<br>Technology, 2017, 7, 3758-3776. | 4.1             | 39               |
| 23 | Formation of C <sub>2</sub> oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst: insight into the role of Fe as a promoter. Physical Chemistry Chemical Physics, 2017, 19, 30883-30894.                        | 2.8             | 21               |
| 24 | Mechanistic Insight into the C <sub>2</sub> Hydrocarbons Formation from Syngas on fcc-Co(111)<br>Surface: A DFT Study. Journal of Physical Chemistry C, 2016, 120, 9132-9147.                                                      | 3.1             | 53               |
| 25 | Insight into CH x formation in Fischer–Tropsch synthesis on the hexahedron Co catalyst: Effect of<br>surface structure on the preferential mechanism and existence form. Applied Catalysis A: General,<br>2016, 525, 76-84.        | 4.3             | 18               |
| 26 | Insight into the mechanism about the initiation, growth and termination of the C–C chain in syngas<br>conversion on the Co(0001) surface: a theoretical study. Physical Chemistry Chemical Physics, 2016, 18,<br>27272-27283.      | 2.8             | 30               |
| 27 | The adsorption and dissociation of methane on cobalt surfaces: thermochemistry and reaction barriers. RSC Advances, 2014, 4, 43004-43011.                                                                                          | 3.6             | 25               |
| 28 | Infrared Spectra of NgBeS (Ng = Ne, Ar, Kr, Xe) and BeS <sub>2</sub> in Noble-Gas Matrices. Journal of Physical Chemistry A, 2013, 117, 1508-1513.                                                                                 | 2.5             | 56               |
| 29 | Spontaneous sulfur dioxide activation by Group V metal (V, Nb, Ta) atoms in excess argon at cryogenic temperatures. Physical Chemistry Chemical Physics, 2013, 15, 9823.                                                           | 2.8             | 14               |
| 30 | Cyclic Pb(SO2), Pb(SO2)2 and Pb2(SO2) molecules: Matrix infrared spectra and DFT calculations.<br>Chemical Physics Letters, 2013, 574, 18-23.                                                                                      | 2.6             | 6                |
| 31 | OMS, OM(η <sup>2</sup> -SO), and OM(η <sup>2</sup> -SO)(η <sup>2</sup> -SO <sub>2</sub> ) Molecules (M =)<br>7415-7424.                                                                                                            | Tj ETQq1<br>4.0 | 1 0.784314<br>25 |