
Massimo Pierucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11014980/publications.pdf Version: 2024-02-01

MASSIMO PIERUCCI

#	Article	IF	CITATIONS
1	Nicotine modulation of the lateral habenula/ventral tegmental area circuit dynamics: An electrophysiological study in rats. Neuropharmacology, 2022, 202, 108859.	4.1	10
2	The impact of chronic daily nicotine exposure and its overnight withdrawal on the structure of anxiety-related behaviors in rats: Role of the lateral habenula. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110131.	4.8	25
3	5-HT/GABA interaction in neurodevelopment and plasticity. Progress in Brain Research, 2021, 259, 287-317.	1.4	3
4	Lateral Habenula 5-HT2C Receptor Function Is Altered by Acute and Chronic Nicotine Exposures. International Journal of Molecular Sciences, 2021, 22, 4775.	4.1	6
5	Effects of chronic nicotine on the temporal structure of anxiety-related behavior in rats tested in hole-board. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 96, 109731.	4.8	15
6	Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats. Neuropharmacology, 2020, 166, 107915.	4.1	24
7	Acute and Chronic Nicotine Exposures Differentially Affect Central Serotonin 2A Receptor Function: Focus on the Lateral Habenula. International Journal of Molecular Sciences, 2020, 21, 1873.	4.1	13
8	Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats. Neurobiology of Disease, 2019, 125, 135-145.	4.4	26
9	Preferential modulation of the lateral habenula activity by serotoninâ€2A rather than â€2C receptors: Electrophysiological and neuroanatomical evidence. CNS Neuroscience and Therapeutics, 2018, 24, 721-733.	3.9	19
10	The FAAH inhibitor URB597 suppresses hippocampal maximal dentate afterdischarges and restores seizure-induced impairment of short and long-term synaptic plasticity. Scientific Reports, 2017, 7, 11152.	3.3	38
11	Acute nicotine induces anxiety and disrupts temporal pattern organization of rat exploratory behavior in hole-board: a potential role for the lateral habenula. Frontiers in Cellular Neuroscience, 2015, 9, 197.	3.7	52
12	Hsp60 response in experimental and human temporal lobe epilepsy. Scientific Reports, 2015, 5, 9434.	3.3	30
13	Role(s) of the 5â€ <scp>HT</scp> 2C Receptor in the Development of Maximal Dentate Activation in the Hippocampus of Anesthetized Rats. CNS Neuroscience and Therapeutics, 2014, 20, 651-661.	3.9	37
14	<i>N</i> â€(furanâ€2â€ylmethyl)â€ <i>N</i> â€methylpropâ€2â€ynâ€1â€amine (F2 <scp>MPA</scp>): A Potential Enhancer with <scp>MAO</scp> Inhibitor Properties. CNS Neuroscience and Therapeutics, 2014, 20, 633-640.	Cognitive 3.9	8
15	Role of Central Serotonin Receptors in Nicotine Addiction. Receptors, 2014, , 279-305.	0.2	4
16	High dose of 8-OH-DPAT decreases maximal dentate gyrus activation and facilitates granular cell plasticity in vivo. Experimental Brain Research, 2013, 230, 441-451.	1.5	21
17	In Vivo Microdialysis to Study Striatal Dopaminergic Neurodegeneration. Neuromethods, 2013, , 23-42.	0.3	1
18	Nitric Oxide Modulation of the Basal Ganglia Circuitry: Therapeutic Implication for Parkinson's Disease and Other Motor Disorders. CNS and Neurological Disorders - Drug Targets, 2011, 10, 777-791.	1.4	30

MASSIMO PIERUCCI

#	Article	IF	CITATIONS
19	Critical role of Nitric Oxide on Nicotineâ€Induced Hyperactivation of Dopaminergic Nigrostriatal System: Electrophysiological and Neurochemical evidence in Rats. CNS Neuroscience and Therapeutics, 2010, 16, 127-136.	3.9	16
20	Impact of Serotonin 2C Receptor Null Mutation on Physiology and Behavior Associated with Nigrostriatal Dopamine Pathway Function. Journal of Neuroscience, 2009, 29, 8156-8165.	3.6	55
21	Involvement of Nitric Oxide in Nigrostriatal Dopaminergic System Degeneration. Annals of the New York Academy of Sciences, 2009, 1155, 309-315.	3.8	26
22	The Unilateral Nigral Lesion Induces Dramatic Bilateral Modification on Rat Brain Monoamine Neurochemistry. Annals of the New York Academy of Sciences, 2009, 1155, 316-323.	3.8	28
23	Electrophysiological and Neurochemical Characterization of 7-Nitroindazole and Molsidomine Acute and Sub-Chronic Administration Effects in the Dopaminergic Nigrostrial System in Rats. , 2009, , 173-182.		3
24	Intake of Tomato-Enriched Diet Protects from 6-Hydroxydopamine-Induced Degeneration of Rat Nigral Dopaminergic Neurons. , 2009, , 333-341.		12
25	Preferential Modulation of the GABAergic vs. Dopaminergic Function in the Substantia Nigra by 5-HT2C Receptor. Advances in Behavioral Biology, 2009, , 285-296.	0.2	1
26	Nitric Oxide Modulation of the Dopaminergic Nigrostriatal System: Focus on Nicotine Action. Advances in Behavioral Biology, 2009, , 309-321.	0.2	0
27	Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Progress in Brain Research, 2008, 172, 7-44.	1.4	135
28	Serotonin–dopamine interaction: electrophysiological evidence. Progress in Brain Research, 2008, 172, 45-71.	1.4	118
29	Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. Progress in Brain Research, 2008, 172, 423-463.	1.4	127
30	The Neurobiological Bases for the Pharmacotherapy of Nicotine Addiction. Current Pharmaceutical Design, 2007, 13, 1269-1284.	1.9	52
31	Non-steroidal anti-inflammatory drugs in Parkinson's disease. Experimental Neurology, 2007, 205, 295-312.	4.1	212
32	7-Nitroindazole Protects Striatal Dopaminergic Neurons against MPP+-Induced Degeneration: An in Vivo Microdialysis Study. Annals of the New York Academy of Sciences, 2006, 1089, 462-471.	3.8	33
33	Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: An in vivo microdialysis study. Brain Research, 2006, 1095, 167-177.	2.2	51
34	Serotonin Involvement in the Basal Ganglia Pathophysiology: Could the 5-HT2C Receptor be a New Target for Therapeutic Strategies?. Current Medicinal Chemistry, 2006, 13, 3069-3081.	2.4	50
35	Central Serotonin2C Receptor: From Physiology to Pathology. Current Topics in Medicinal Chemistry, 2006, 6, 1909-1925.	2.1	78
36	Stimulation of Serotonin2C Receptors Blocks the Hyperactivation of Midbrain Dopamine Neurons Induced by Nicotine Administration. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 109-118.	2.5	52

#	Article	IF	CITATIONS
37	Selective stimulation of serotonin2Creceptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. Journal of Neurochemistry, 2004, 89, 418-429.	3.9	79