Daniel Robert Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1101424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interplay of thyroid hormones and the immune system – where we stand and why we need to know about it. European Journal of Endocrinology, 2022, 186, R65-R77.	1.9	29
2	Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nature Communications, 2022, 13, 2022.	5.8	16
3	Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Advances, 2021, 5, 1259-1272.	2.5	6
4	Tissue-resident macrophages mediate neutrophil recruitment and kidney injury in shiga toxin-induced hemolytic uremic syndrome. Kidney International, 2021, 100, 349-363.	2.6	7
5	Spatial proteomics revealed a CX3CL1-dependent crosstalk between the urothelium and relocated macrophages through IL-6 during an acute bacterial infection in the urinary bladder. Mucosal Immunology, 2020, 13, 702-714.	2.7	17
6	A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nature Metabolism, 2019, 1, 236-250.	5.1	221
7	Contemporaneous 3D characterization of acute and chronic myocardial I/R injury and response. Nature Communications, 2019, 10, 2312.	5.8	60
8	Remote control of Th17 responses: The lung-CNS axis during EAE. Journal of Leukocyte Biology, 2019, 105, 827-828.	1.5	1
9	Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxidants and Redox Signaling, 2019, 30, 213-231.	2.5	36
10	CD11b Protects Against Tissue Damage During S. pneumoniae Lung Infection by Limiting Neutrophil Recruitment. , 2019, 73, .		0
11	Frontline Science: Proliferation of Ly6C+ monocytes during urinary tract infections is regulated by IL-6 trans-signaling. Journal of Leukocyte Biology, 2018, 103, 13-22.	1.5	23
12	CCR2â€dependent Gr1 high monocytes promote kidney injury in shiga toxinâ€induced hemolytic uremic syndrome in mice. European Journal of Immunology, 2018, 48, 990-1000.	1.6	3
13	Resident macrophages in the healthy and inflamed intestinal muscularis externa. Pflugers Archiv European Journal of Physiology, 2017, 469, 541-552.	1.3	18
14	<i>Irf4</i> -dependent CD103 ⁺ CD11b ⁺ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus. Gut, 2017, 66, 2110-2120.	6.1	63
15	Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. Journal of the American Society of Nephrology: JASN, 2017, 28, 452-459.	3.0	274
16	Neutrophil Migration into the Infected Uroepithelium Is Regulated by the Crosstalk between Resident and Helper Macrophages. Pathogens, 2016, 5, 15.	1.2	16
17	CD103+ Kidney Dendritic Cells Protect against Crescentic GN by Maintaining IL-10–Producing Regulatory T Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 3368-3382. 	3.0	33
18	The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathologica, 2016, 132, 413-431.	3.9	26

DANIEL ROBERT ENGEL

#	Article	IF	CITATIONS
19	Dendritic Cells and Macrophages. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1841-1851.	2.2	81
20	CX3CR1 Reduces Kidney Fibrosis by Inhibiting Local Proliferation of Profibrotic Macrophages. Journal of Immunology, 2015, 194, 1628-1638.	0.4	62
21	Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nature Methods, 2015, 12, 445-452.	9.0	193
22	Functional classification of memory CD8+ T cells by CX3CR1 expression. Nature Communications, 2015, 6, 8306.	5.8	231
23	Crosstalk between Sentinel and Helper Macrophages Permits Neutrophil Migration into Infected Uroepithelium. Cell, 2014, 156, 456-468.	13.5	203
24	VEGF-Production by CCR2-Dependent Macrophages Contributes to Laser-Induced Choroidal Neovascularization. PLoS ONE, 2014, 9, e94313.	1.1	65
25	IL-6 Controls the Innate Immune Response against <i>Listeria monocytogenes</i> via Classical IL-6 Signaling. Journal of Immunology, 2013, 190, 703-711.	0.4	140
26	Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. Journal of Clinical Investigation, 2013, 123, 4242-4254.	3.9	84
27	The role of lymphoid tissue in the attenuation of the postoperative ileus. American Journal of Physiology - Renal Physiology, 2013, 304, G401-G412.	1.6	10
28	Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation. Journal of the American Society of Nephrology: JASN, 2012, 23, 629-640.	3.0	61
29	Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nature Methods, 2012, 9, 385-390.	9.0	128
30	Renal Dendritic Cells Adopt a Pro-Inflammatory Phenotype in Obstructive Uropathy to Activate T Cells but Do Not Directly Contribute to Fibrosis. American Journal of Pathology, 2012, 180, 91-103.	1.9	78
31	Homeostatic and pathogenic role of renal dendritic cells. Kidney International, 2011, 80, 139-145.	2.6	41
32	Kidney Dendritic Cells Become Pathogenic during Crescentic Glomerulonephritis with Proteinuria. Journal of the American Society of Nephrology: JASN, 2011, 22, 306-316.	3.0	76
33	Endogenous foxp3+ T-regulatory cells suppress anti-glomerular basement membrane nephritis. Kidney International, 2011, 79, 977-986.	2.6	51
34	Kidney Dendritic Cells Induce Innate Immunity against Bacterial Pyelonephritis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1435-1441.	3.0	90
35	Impact of CCR7 on the gastrointestinal field effect. American Journal of Physiology - Renal Physiology, 2011, 300, G665-G675.	1.6	7
36	T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nature Medicine, 2010, 16, 1407-1413.	15.2	95

DANIEL ROBERT ENGEL

#	Article	IF	CITATIONS
37	Tip-DC Development during Parasitic Infection Is Regulated by IL-10 and Requires CCL2/CCR2, IFN-γ and MyD88 Signaling. PLoS Pathogens, 2010, 6, e1001045.	2.1	124
38	CCR2 Mediates Homeostatic and Inflammatory Release of Gr1high Monocytes from the Bone Marrow, but Is Dispensable for Bladder Infiltration in Bacterial Urinary Tract Infection. Journal of Immunology, 2008, 181, 5579-5586.	0.4	86
39	In Vivo Visualization of Dendritic Cells, Macrophages, and Microglial Cells Responding to Laser-Induced Damage in the Fundus of the Eye. , 2008, 49, 3649.		78
40	Renal Dendritic Cells Stimulate IL-10 Production and Attenuate Nephrotoxic Nephritis. Journal of the American Society of Nephrology: JASN, 2008, 19, 527-537.	3.0	117
41	The role of chemokines and their receptors in dendritic cell biology. Frontiers in Bioscience - Landmark, 2008, 13, 2238.	3.0	45
42	Tumor Necrosis Factor Alpha- and Inducible Nitric Oxide Synthase-Producing Dendritic Cells Are Rapidly Recruited to the Bladder in Urinary Tract Infection but Are Dispensable for Bacterial Clearance. Infection and Immunity, 2006, 74, 6100-6107.	1.0	87
43	Heat Shock Protein 60 Is Released in Immune-Mediated Glomerulonephritis and Aggravates Disease: In Vivo Evidence for an Immunologic Danger Signal. Journal of the American Society of Nephrology: JASN, 2005, 16, 383-391.	3.0	51
44	Identification and Functional Characterization of Dendritic Cells in the Healthy Murine Kidney and in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2004, 15, 613-621.	3.0	218

4