Sanjay Sampath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11014234/publications.pdf Version: 2024-02-01

SANIAV SAMDATH

#	Article	IF	CITATIONS
1	Evaluating steam oxidation kinetics of environmental barrier coatings. Journal of the American Ceramic Society, 2022, 105, 590-605.	3.8	19
2	The impact of piston thermal barrier coating roughness on high-load diesel operation. International Journal of Engine Research, 2021, 22, 1239-1254.	2.3	22
3	Steam oxidation of ytterbium disilicate environmental barrier coatings with and without a silicon bond coat. Journal of the American Ceramic Society, 2021, 104, 2285-2300.	3.8	29
4	In Search of Durable Sandphobic Thermal/Environmental Barrier Coatings for Rotorcraft Gas Turbine Engines. , 2021, , .		1
5	Impact damage of narrow silicon carbide (SiC) ceramics with and without environmental barrier coatings (EBCs) by various foreign object debris (FOD) simulants. Surface and Coatings Technology, 2021, 407, 126779.	4.8	7
6	Crystallization behavior of air-plasma-sprayed ytterbium-silicate-based environmental barrier coatings. Journal of the European Ceramic Society, 2021, 41, 3696-3705.	5.7	37
7	Effect of microstructure on fracture behavior of freestanding plasma sprayed 7 wt.% Y2O3 stabilized ZrO2. Journal of the European Ceramic Society, 2021, 41, 4294-4301.	5.7	9
8	Phase evolution in plasma sprayed Nb2O5 coatings. Journal of the European Ceramic Society, 2021, 41, 5248-5257.	5.7	5
9	Interplay between cracking and delamination in incrementally deposited plasma sprayed coatings. Acta Materialia, 2021, 215, 117074.	7.9	13
10	Coupled Thermal and Mechanical Analysis of Thermal Barrier Coatings Under Gradient Exposure. Jom, 2021, 73, 3606-3617.	1.9	2
11	Durability of plasma sprayed thermal barrier coatings with controlled properties part I: For planar disk substrates. Surface and Coatings Technology, 2021, 424, 127678.	4.8	6
12	Durability of plasma sprayed Thermal Barrier Coatings with controlled properties part II: Effects of geometrical curvature. Surface and Coatings Technology, 2021, 424, 127671.	4.8	2
13	Factors Governing Segmentation Crack Characteristics in Air Plasma Sprayed Ceramics. Journal of the European Ceramic Society, 2021, 42, 1077-1077.	5.7	12
14	Segmentation crack formation dynamics during air plasma spraying of zirconia. Acta Materialia, 2020, 183, 196-206.	7.9	52
15	Lowâ€ŧemperature stiffening of air plasmaâ€sprayed 7Âwt% Y 2 O 3 â€stabilized ZrO 2. Journal of the American Ceramic Society, 2020, 103, 2076-2089.	3.8	11
16	Thermal Swing Evaluation of Thermal Barrier Coatings for Diesel Engines. Journal of Thermal Spray Technology, 2020, 29, 1943-1957.	3.1	9
17	Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings. Journal of Thermal Spray Technology, 2020, 29, 1322-1338.	3.1	14
18	Dynamic interactions of ingested molten silicate particles with air plasma sprayed thermal barrier coatings. Journal of Materials Research, 2020, 35, 2321-2334.	2.6	9

#	Article	lF	CITATIONS
19	Optimization of All-Oxide 2D Layered Thermoelectric Device Fabricated by Plasma Spray. Journal of Thermal Spray Technology, 2020, 29, 1815-1826.	3.1	3
20	In situ characterization of foreign object damage (FOD) in environmentalâ€barrierâ€coated silicon carbide (SiC) ceramic. Journal of the American Ceramic Society, 2020, 103, 4586-4601.	3.8	9
21	Observation of Residual Stress and Fatigue Behavior of Structurally Integrated Thermally Sprayed Nickel Coatings. Journal of Thermal Spray Technology, 2020, 29, 1229-1241.	3.1	2
22	Hysteretic and time dependent deformation of plasma sprayed zirconia ceramics. Acta Materialia, 2020, 194, 394-402.	7.9	7
23	On the surface and system performance of thermally sprayed carbide coatings produced under controlled residual stresses. Surface and Coatings Technology, 2020, 387, 125536.	4.8	6
24	Process-Geometry Interplay in the Deposition and Microstructural Evolution of 7YSZ Thermal Barrier Coatings by Air Plasma Spray. Journal of Thermal Spray Technology, 2020, 29, 560-573.	3.1	5
25	Effect of Air Plasma Sprayed Flash Bond Coatings on Furnace Cycle Lifetime of Disks and Rods. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	4
26	Characterization of the Benefit of APS Flash Coatings in Improving TBC Lifetime. Minerals, Metals and Materials Series, 2020, , 739-746.	0.4	0
27	Dilation Behavior of Thermal Spray Coatings. Journal of Thermal Spray Technology, 2019, 28, 1851-1866.	3.1	5
28	Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems. Surface and Coatings Technology, 2019, 375, 782-792.	4.8	37
29	Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure. Journal of the European Ceramic Society, 2019, 39, 2122-2131.	5.7	33
30	Characteristics of Conventional and Cascaded Arc Plasma Spray-Deposited Ceramic Under Standard and High-Throughput Conditions. Journal of Thermal Spray Technology, 2019, 28, 690-705.	3.1	18
31	Thermoelectric properties of plasma sprayed of calcium cobaltite (Ca2Co2O5). Journal of the European Ceramic Society, 2019, 39, 3749-3755.	5.7	7
32	Cracking induced tribological behavior changes for the HVOF WC-12Co cermet coatings. Ceramics International, 2019, 45, 4718-4728.	4.8	19
33	On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminates—Part II: Low-Velocity Thermal Spray Coatings. Journal of Thermal Spray Technology, 2018, 27, 308-318.	3.1	5
34	Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings. Journal of Thermal Spray Technology, 2018, 27, 371-378.	3.1	9
35	Orientationâ€dependent mechanical and thermal properties of plasmaâ€sprayed ceramics. Journal of the American Ceramic Society, 2018, 101, 2471-2481.	3.8	15
36	On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminates—Part I: High Velocity Thermal Spray Coatings. Journal of Thermal Spray Technology, 2018, 27, 296-307.	3.1	30

#	Article	IF	CITATIONS
37	Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings. Wear, 2018, 398-399, 209-219.	3.1	61
38	Sustainability of Metal Structures via Spray-Clad Remanufacturing. Jom, 2018, 70, 512-520.	1.9	20
39	Fracture Toughness of Thermal Spray Ceramics: Measurement Techniques and Processing Dependence. Journal of Thermal Spray Technology, 2018, 27, 1076-1089.	3.1	9
40	Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2â^'x Deposits. Journal of Thermal Spray Technology, 2018, 27, 968-982.	3.1	10
41	TiO 2â^'X based thermoelectric generators enabled by additive and layered manufacturing. Applied Energy, 2017, 192, 24-32.	10.1	24
42	Fatigue behavior of thermal sprayed WC-CoCr- steel systems: Role of process and deposition parameters. Surface and Coatings Technology, 2017, 315, 408-416.	4.8	29
43	Sliding wear behavior of air plasma sprayed Al2O3 coatings sealed with aluminum phosphate. Tribology International, 2017, 116, 431-439.	5.9	29
44	In-situ observation of strain and cracking in coated laminates by digital image correlation. Surface and Coatings Technology, 2017, 328, 211-218.	4.8	21
45	Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters. Journal of Thermal Spray Technology, 2017, 26, 1994-2004.	3.1	1
46	The 2016 Thermal Spray Roadmap. Journal of Thermal Spray Technology, 2016, 25, 1376-1440.	3.1	243
47	Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2â^'x. Scientific Reports, 2016, 6, 36581.	3.3	26
48	Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining. Journal of Thermal Spray Technology, 2016, 25, 431-440.	3.1	13
49	The role of amorphous phase content on the electrical properties of atmospheric plasma sprayed (Ba,Sr)TiO3 coatings. Ceramics International, 2016, 42, 11010-11014.	4.8	4
50	Nature inspired, multi-functional, damage tolerant thermal spray coatings. Surface and Coatings Technology, 2016, 297, 43-50.	4.8	12
51	Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements. Journal of Thermal Spray Technology, 2016, 25, 1666-1683.	3.1	24
52	Mechanical Behavior of Spray-Coated Metallic Laminates. Journal of Thermal Spray Technology, 2016, 25, 1009-1019.	3.1	15
53	Plasma sprayed manganese–cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance. Journal of Power Sources, 2016, 304, 234-243.	7.8	33
54	Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Materialia, 2016, 105, 355-366.	7.9	181

#	Article	IF	CITATIONS
55	Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment. Journal of the American Ceramic Society, 2015, 98, 1769-1777.	3.8	97
56	Development and optimization of thermal sprayed ceramic microfiltration membranes. Journal of Membrane Science, 2015, 489, 106-111.	8.2	11
5 7	On the dielectric strengths of atmospheric plasma sprayed Al2O3, Y2O3, ZrO2–7% Y2O3 and (Ba,Sr)TiO3 coatings. Ceramics International, 2015, 41, 11169-11176.	4.8	27
58	Bioinspired Hybrid Materials from Sprayâ€Formed Ceramic Templates. Advanced Materials, 2015, 27, 3073-3078.	21.0	64
59	Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings. Jom, 2015, 67, 1540-1553.	1.9	26
60	Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings. Journal of Thermal Spray Technology, 2015, 24, 454-466.	3.1	23
61	2ZrO ₂ ·Y ₂ O ₃ Thermal Barrier Coatings Resistant to Degradation by Molten <scp>CMAS</scp> : Part I, Optical Basicity Considerations and Processing. Journal of the American Ceramic Society, 2014, 97, 3943-3949.	3.8	111
62	LSM Protective Coatings on Stainless Steel as Interconnects for Solid Oxide Fuel Cells. Materials Research Society Symposia Proceedings, 2014, 1644, 1.	0.1	2
63	Fracture Toughness of Plasma‧prayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging. Journal of the American Ceramic Society, 2014, 97, 2736-2744.	3.8	117
64	CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions. Journal of Thermal Spray Technology, 2014, 23, 708-715.	3.1	23
65	Damage mechanisms and cracking behavior of thermal sprayed WC–CoCr coating under scratch testing. Wear, 2014, 313, 97-105.	3.1	63
66	Role of process conditions on the microstructure, stoichiometry and functional performance of atmospheric plasma sprayed La(Sr)MnO3 coatings. Journal of Power Sources, 2014, 259, 245-254.	7.8	25
67	Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance. Journal of the American Ceramic Society, 2014, 97, 2770-2778.	3.8	85
68	Thermoelectric Properties of Magnesium Silicide Deposited by Use of an Atmospheric Plasma Thermal Spray. Journal of Electronic Materials, 2014, 43, 2723-2730.	2.2	8
69	Partnership for accelerated insertion of new technology: case study for thermal spray technology. Integrating Materials and Manufacturing Innovation, 2013, 2, 1-35.	2.6	15
70	Fabrication of Thermoelectric Devices Using Thermal Spray: Application to Vehicle Exhaust Systems. Journal of Thermal Spray Technology, 2013, 22, 577-587.	3.1	18
71	Integrated Study of APS YSZ Coatings with Different Spray Angle. Journal of Thermal Spray Technology, 2013, 22, 110-115.	3.1	9
72	Effect of Powder Injection on the Interfacial Fracture Toughness of Plasma-Sprayed Zirconia. Journal of Thermal Spray Technology, 2013, 22, 166-174.	3.1	14

#	Article	IF	CITATIONS
73	Determination of Thermal Spray Coating Property with Curvature Measurements. Journal of Thermal Spray Technology, 2013, 22, 1337-1347.	3.1	10
74	Progress on Searching Optimal Thermal Spray Parameters for Magnesium Silicide. Materials Research Society Symposia Proceedings, 2013, 1490, 173-177.	0.1	2
75	Fabrication of Thermoelectric Devices for Vehicle Exhaust Applications Using Thermal Spray and Laser Processing. , 2012, , .		0
76	Transition From GMR to AMR at the Percolation Threshold in Ferrite-Magnetic Alloy Composites. IEEE Transactions on Magnetics, 2012, 48, 2765-2768.	2.1	3
77	Processing science of advanced thermal-barrier systems. MRS Bulletin, 2012, 37, 903-910.	3.5	244
78	Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies. Journal of Thermal Spray Technology, 2012, 21, 950-962.	3.1	30
79	Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia. Journal of Thermal Spray Technology, 2012, 21, 1224-1233.	3.1	23
80	Functionally graded WC–Co/NiAl HVOF coatings for damage tolerance, wear and corrosion protection. Surface and Coatings Technology, 2012, 206, 2585-2601.	4.8	61
81	Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surface and Coatings Technology, 2012, 206, 3911-3916.	4.8	110
82	Controlled Introduction of Anelasticity in Plasma‣prayed Ceramics. Journal of the American Ceramic Society, 2011, 94, s104.	3.8	29
83	Inhibition of molten droplet deposition by substrate surface hydroxides. Surface and Coatings Technology, 2011, 206, 1283-1292.	4.8	14
84	Processing effects on in-flight particle state and functional coating properties of plasma-sprayed manganese zinc ferrite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 22-31.	3.5	11
85	Using Thermal Spray and Laser Micromachining to Fabricate Sensors. Journal of Thermal Spray Technology, 2011, 20, 958-966.	3.1	8
86	On the Response of Different Particle State Sensors to Deliberate Process Variations. Journal of Thermal Spray Technology, 2011, 20, 1035-1048.	3.1	22
87	An Integrated Assessment of Process-Microstructure-Property Relationships for Thermal-Sprayed NiCr Coatings. Journal of Thermal Spray Technology, 2011, 20, 1244-1258.	3.1	34
88	Jet Engine Coatings for Resisting Volcanic Ash Damage. Advanced Materials, 2011, 23, 2419-2424.	21.0	198
89	Jet Engine Coatings: Jet Engine Coatings for Resisting Volcanic Ash Damage (Adv. Mater. 21/2011). Advanced Materials, 2011, 23, 2388-2388.	21.0	5
90	Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7214-7221.	5.6	105

#	Article	IF	CITATIONS
91	Influence of substrate surface conditions on the deposition and spreading of molten droplets. Thin Solid Films, 2011, 519, 2445-2456.	1.8	46
92	Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia, 2010, 58, 6835-6844.	7.9	163
93	Characterization of crystallographic texture in plasma-sprayed splats by electron-backscattered diffraction. Surface and Coatings Technology, 2010, 204, 3614-3618.	4.8	13
94	Estimation of Molten Content of the Spray Stream from Analysis of Experimental Particle Diagnostics. Journal of Thermal Spray Technology, 2010, 19, 476-483.	3.1	16
95	Assessing Process and Coating Reliability Through Monitoring of Process and Design Relevant Coating Properties. Journal of Thermal Spray Technology, 2010, 19, 695-712.	3.1	56
96	Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future. Journal of Thermal Spray Technology, 2010, 19, 921-949.	3.1	101
97	Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach. Journal of Thermal Spray Technology, 2010, 19, 852-865.	3.1	59
98	Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric dc Plasma Spraying. Plasma Chemistry and Plasma Processing, 2010, 30, 761-778.	2.4	21
99	Damage tolerant functionally graded WC–Co/Stainless Steel HVOF coatings. Surface and Coatings Technology, 2010, 205, 2197-2208.	4.8	44
100	Temperatureâ€Gradient Effects in Thermal Barrier Coatings: An Investigation Through Modeling, High Heat Flux Test, and Embedded Sensor. Journal of the American Ceramic Society, 2010, 93, 3418-3426.	3.8	12
101	Processâ€Controlled Plasmaâ€Sprayed Yttriaâ€Stabilized Zirconia Coatings: New Insights from Ultrasmallâ€Angle Xâ€ray Scattering. Journal of the American Ceramic Society, 2009, 92, 491-500.	3.8	10
102	Effect of the Starting Microstructure on the Thermal Properties of Asâ€Sprayed and Thermally Exposed Plasmaâ€Sprayed YSZ Coatings. Journal of the American Ceramic Society, 2009, 92, 710-716.	3.8	94
103	Thermal sprayed ceramic coatings: fundamental issues and application considerations. International Journal of Materials and Product Technology, 2009, 35, 425.	0.2	28
104	Microstructure–Thermal Conductivity Relationships for Plasmaâ€Sprayed Yttriaâ€Stabilized Zirconia Coatings. Journal of the American Ceramic Society, 2008, 91, 2636-2645.	3.8	153
105	Anelastic Behavior of Plasma‧prayed Zirconia Coatings. Journal of the American Ceramic Society, 2008, 91, 4036-4043.	3.8	62
106	Interdigital capacitive strain gauges fabricated by direct-write thermal spray and ultrafast laser micromachining. Sensors and Actuators A: Physical, 2007, 133, 1-8.	4.1	48
107	Comparison of the Thermal Transport Property Measurements of Thermally Sprayed Coatings by the Laser and Xenon Flash Techniques. Journal of Thermal Spray Technology, 2007, 16, 444-448.	3.1	6
108	Modeling of Interdigital Capacitive Strain Gauges Fabricated Using Direct-Write Technologies. , 2006, ,		0

#	Article	IF	CITATIONS
109	Effect of Injection Angle on Particles In-Flight Characteristics. , 2006, , .		2
110	Morphology and microstructure of thermal plasma sprayed silicon splats and coatings. Surface and Coatings Technology, 2006, 201, 1454-1463.	4.8	12
111	Particle Characterization and Splat Formation of Plasma Sprayed Zirconia. Journal of Thermal Spray Technology, 2006, 15, 97-105.	3.1	38
112	Anisotropic electrical conduction from heterogeneous oxidation states in plasma sprayed TiO[sub 2] coatings. Journal of Applied Physics, 2006, 100, 114906.	2.5	26
113	Focused Ion Beam Study of Ni5Al Single Splat Microstructure. Materials Research Society Symposia Proceedings, 2006, 983, 1.	0.1	2
114	Optimizing Nonlinear Properties of Thermal Sprayed Coatings through Processing Parameters. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	1
115	Processing-Microstructure-Property Relations in Anisotropic Thermal Sprayed Composites. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	1
116	Characterization of Interdigital Capacitive Strain Gauges by Direct Write Technology. , 2005, , 237.		2
117	Spinel humidity sensors prepared by thermal spray direct writing. Sensors and Actuators B: Chemical, 2005, 107, 342-346.	7.8	40
118	Plasma spray coatings for producing next-generation supported membranes. Topics in Catalysis, 2005, 32, 241-249.	2.8	13
119	Electrical Conduction in Thermally Sprayed Thin Metallic Coatings. Materials Research Society Symposia Proceedings, 2005, 890, 1.	0.1	4
120	Microstructure and Electrical Characteristics of Plasma Sprayed Thick Film Mn-Co-Ni Oxide Thermistor. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	1
121	Anisotropic resistivity in plasma-sprayed silicon thick films. Journal of Applied Physics, 2005, 97, 094906.	2.5	9
122	Three-dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior. International Journal of Heat and Mass Transfer, 2004, 47, 5189-5200.	4.8	68
123	Ultrafast laser micromachining of thermal sprayed coatings for microheaters: design, fabrication and characterization. Sensors and Actuators A: Physical, 2004, 114, 102-111.	4.1	25
124	Phase evolution of yttrium aluminium garnet (YAG) in a citrate–nitrate gel combustion process. Journal of Materials Chemistry, 2004, 14, 1288-1292.	6.7	36
125	Deformation and strain distribution in plasma sprayed nickel–aluminum coating loaded by a spherical indenter. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 360, 264-274.	5.6	23
126	Novel synthesis and magnetocaloric assessment of functional oxide perovskites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 97, 245-250.	3.5	15

#	Article	IF	CITATIONS
127	Comparison of citrate–nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet. Journal of Materials Research, 2002, 17, 2846-2851.	2.6	27
128	Single-step deposition of Eu-doped Y2O3 phosphor coatings through a precursor plasma spraying technique. Journal of Materials Research, 2002, 17, 2771-2774.	2.6	8
129	Interfacial Layer Effects in Ba1-xSrxTiO3 Thick Films prepared by Plasma Spray. Materials Research Society Symposia Proceedings, 2002, 758, 271.	0.1	2
130	Shock-Induced Transformations in Hexagonal Boron Nitride by High-Velocity Thermal Spray. Journal of the American Ceramic Society, 2002, 85, 2437-2443.	3.8	5
131	Dielectric Properties of Spray Deposited BaTiO ₃ and Ba _{0.68} Sr _{0.32} TiO ₃ . Materials Research Society Symposia Proceedings, 2001, 698, 361.	0.1	2
132	Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray. Thin Solid Films, 2001, 385, 132-141.	1.8	149
133	Grain morphology of molybdenum splats plasma-sprayed on glass substrates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 299, 235-240.	5.6	13
134	Yttrium Aluminum Garnet (YAG) Films through a Precursor Plasma Spraying Technique. Journal of the American Ceramic Society, 2001, 84, 1906-1908.	3.8	31
135	Deposition and Characterization of Y3Al5O12 (YAG) Films and Powders by Plasma Spray Synthesis. Materials Research Society Symposia Proceedings, 2000, 658, 6291.	0.1	0
136	Thermal Spray: Current Status and Future Trends. MRS Bulletin, 2000, 25, 17-25.	3.5	326
137	Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behavior of Thermally Sprayed WC-Co Coatings. Tribology Transactions, 1997, 40, 470-478.	2.0	153
138	Erosion studies on duplex and graded ceramic overlay coatings. Jom, 1996, 48, 51-54.	1.9	6
139	Plasma spray forming metals, intermetallics, and composites. Jom, 1993, 45, 42-49.	1.9	21
140	Microstructural characteristics of plasma spray consolidated amorphous powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 167, 1-10.	5.6	28
141	Neutron Through-Thickness Stress Measurements in Coatings with High Spatial Resolution. Materials Science Forum, 0, 905, 165-173.	0.3	18
142	Acoustic Emission Responses of Plasma Sprayed Ceramics During Four Point Bend Tests. Ceramic Engineering and Science Proceedings, 0, , 44-50.	0.1	5
143	The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion. SAE International Journal of Advances and Current Practices in Mobility, 0, 2, 1786-1799.	2.0	10
144	Accelerated oxidation during 1350°C cycling of ytterbium silicate environmental barrier coatings. Journal of the American Ceramic Society, 0, , .	3.8	3

#	Article	IF	CITATIONS
145	Delamination Failure on High-Output Diesel Engine Thermal Barrier Coatings. , 0, , .		3
146	Damage accumulation in plasma sprayed zirconia under cyclic loading. Journal of the American Ceramic Society, 0, , .	3.8	1
147	Laser thermal gradient testing of air plasma sprayed multilayered, multiâ€material thermal barrier coatings. International Journal of Applied Ceramic Technology, 0, , .	2.1	2