Sanjay Sampath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11014234/publications.pdf

Version: 2024-02-01

126907 106344 4,939 147 33 65 citations g-index h-index papers 150 150 150 2616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermal Spray: Current Status and Future Trends. MRS Bulletin, 2000, 25, 17-25.	3.5	326
2	Processing science of advanced thermal-barrier systems. MRS Bulletin, 2012, 37, 903-910.	3.5	244
3	The 2016 Thermal Spray Roadmap. Journal of Thermal Spray Technology, 2016, 25, 1376-1440.	3.1	243
4	Jet Engine Coatings for Resisting Volcanic Ash Damage. Advanced Materials, 2011, 23, 2419-2424.	21.0	198
5	Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Materialia, 2016, 105, 355-366.	7.9	181
6	Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia, 2010, 58, 6835-6844.	7.9	163
7	Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behavior of Thermally Sprayed WC-Co Coatings. Tribology Transactions, 1997, 40, 470-478.	2.0	153
8	Microstructure–Thermal Conductivity Relationships for Plasmaâ€5prayed Yttriaâ€5tabilized Zirconia Coatings. Journal of the American Ceramic Society, 2008, 91, 2636-2645.	3.8	153
9	Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray. Thin Solid Films, 2001, 385, 132-141.	1.8	149
10	Fracture Toughness of Plasma‧prayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging. Journal of the American Ceramic Society, 2014, 97, 2736-2744.	3.8	117
11	2ZrO ₂ ·Y ₂ O ₃ Thermal Barrier Coatings Resistant to Degradation by Molten <scp>CMAS</scp> : Part I, Optical Basicity Considerations and Processing. Journal of the American Ceramic Society, 2014, 97, 3943-3949.	3.8	111
12	Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surface and Coatings Technology, 2012, 206, 3911-3916.	4.8	110
13	Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Materials Science & Science & Science and Processing, 2011, 528, 7214-7221.	5.6	105
14	Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future. Journal of Thermal Spray Technology, 2010, 19, 921-949.	3.1	101
15	Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment. Journal of the American Ceramic Society, 2015, 98, 1769-1777.	3.8	97
16	Effect of the Starting Microstructure on the Thermal Properties of Asâ€Sprayed and Thermally Exposed Plasmaâ€Sprayed YSZ Coatings. Journal of the American Ceramic Society, 2009, 92, 710-716.	3.8	94
17	Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance. Journal of the American Ceramic Society, 2014, 97, 2770-2778.	3.8	85
18	Three-dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior. International Journal of Heat and Mass Transfer, 2004, 47, 5189-5200.	4.8	68

#	Article	IF	CITATIONS
19	Bioinspired Hybrid Materials from Sprayâ€Formed Ceramic Templates. Advanced Materials, 2015, 27, 3073-3078.	21.0	64
20	Damage mechanisms and cracking behavior of thermal sprayed WC–CoCr coating under scratch testing. Wear, 2014, 313, 97-105.	3.1	63
21	Anelastic Behavior of Plasmaâ€5prayed Zirconia Coatings. Journal of the American Ceramic Society, 2008, 91, 4036-4043.	3.8	62
22	Functionally graded WC–Co/NiAl HVOF coatings for damage tolerance, wear and corrosion protection. Surface and Coatings Technology, 2012, 206, 2585-2601.	4.8	61
23	Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings. Wear, 2018, 398-399, 209-219.	3.1	61
24	Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach. Journal of Thermal Spray Technology, 2010, 19, 852-865.	3.1	59
25	Assessing Process and Coating Reliability Through Monitoring of Process and Design Relevant Coating Properties. Journal of Thermal Spray Technology, 2010, 19, 695-712.	3.1	56
26	Segmentation crack formation dynamics during air plasma spraying of zirconia. Acta Materialia, 2020, 183, 196-206.	7.9	52
27	Interdigital capacitive strain gauges fabricated by direct-write thermal spray and ultrafast laser micromachining. Sensors and Actuators A: Physical, 2007, 133, 1-8.	4.1	48
28	Influence of substrate surface conditions on the deposition and spreading of molten droplets. Thin Solid Films, 2011, 519, 2445-2456.	1.8	46
29	Damage tolerant functionally graded WC–Co/Stainless Steel HVOF coatings. Surface and Coatings Technology, 2010, 205, 2197-2208.	4.8	44
30	Spinel humidity sensors prepared by thermal spray direct writing. Sensors and Actuators B: Chemical, 2005, 107, 342-346.	7.8	40
31	Particle Characterization and Splat Formation of Plasma Sprayed Zirconia. Journal of Thermal Spray Technology, 2006, 15, 97-105.	3.1	38
32	Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems. Surface and Coatings Technology, 2019, 375, 782-792.	4.8	37
33	Crystallization behavior of air-plasma-sprayed ytterbium-silicate-based environmental barrier coatings. Journal of the European Ceramic Society, 2021, 41, 3696-3705.	5.7	37
34	Phase evolution of yttrium aluminium garnet (YAG) in a citrate–nitrate gel combustion process. Journal of Materials Chemistry, 2004, 14, 1288-1292.	6.7	36
35	An Integrated Assessment of Process-Microstructure-Property Relationships for Thermal-Sprayed NiCr Coatings. Journal of Thermal Spray Technology, 2011, 20, 1244-1258.	3.1	34
36	Plasma sprayed manganese–cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance. Journal of Power Sources, 2016, 304, 234-243.	7.8	33

#	Article	IF	CITATIONS
37	Molten silicate interactions with plasma sprayed thermal barrier coatings: Role of materials and microstructure. Journal of the European Ceramic Society, 2019, 39, 2122-2131.	5.7	33
38	Yttrium Aluminum Garnet (YAG) Films through a Precursor Plasma Spraying Technique. Journal of the American Ceramic Society, 2001, 84, 1906-1908.	3.8	31
39	Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies. Journal of Thermal Spray Technology, 2012, 21, 950-962.	3.1	30
40	On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminatesâ€"Part I: High Velocity Thermal Spray Coatings. Journal of Thermal Spray Technology, 2018, 27, 296-307.	3.1	30
41	Controlled Introduction of Anelasticity in Plasmaâ€Sprayed Ceramics. Journal of the American Ceramic Society, 2011, 94, s104.	3.8	29
42	Fatigue behavior of thermal sprayed WC-CoCr- steel systems: Role of process and deposition parameters. Surface and Coatings Technology, 2017, 315, 408-416.	4.8	29
43	Sliding wear behavior of air plasma sprayed Al2O3 coatings sealed with aluminum phosphate. Tribology International, 2017, 116, 431-439.	5.9	29
44	Steam oxidation of ytterbium disilicate environmental barrier coatings with and without a silicon bond coat. Journal of the American Ceramic Society, 2021, 104, 2285-2300.	3.8	29
45	Microstructural characteristics of plasma spray consolidated amorphous powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 167, 1-10.	5.6	28
46	Thermal sprayed ceramic coatings: fundamental issues and application considerations. International Journal of Materials and Product Technology, 2009, 35, 425.	0.2	28
47	Comparison of citrate–nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet. Journal of Materials Research, 2002, 17, 2846-2851.	2.6	27
48	On the dielectric strengths of atmospheric plasma sprayed Al2O3, Y2O3, ZrO2–7% Y2O3 and (Ba,Sr)TiO3 coatings. Ceramics International, 2015, 41, 11169-11176.	4.8	27
49	Anisotropic electrical conduction from heterogeneous oxidation states in plasma sprayed TiO[sub 2] coatings. Journal of Applied Physics, 2006, 100, 114906.	2.5	26
50	Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings. Jom, 2015, 67, 1540-1553.	1.9	26
51	Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2â^'x. Scientific Reports, 2016, 6, 36581.	3.3	26
52	Ultrafast laser micromachining of thermal sprayed coatings for microheaters: design, fabrication and characterization. Sensors and Actuators A: Physical, 2004, 114, 102-111.	4.1	25
53	Role of process conditions on the microstructure, stoichiometry and functional performance of atmospheric plasma sprayed La(Sr)MnO3 coatings. Journal of Power Sources, 2014, 259, 245-254.	7.8	25
54	Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements. Journal of Thermal Spray Technology, 2016, 25, 1666-1683.	3.1	24

#	Article	IF	CITATIONS
55	TiO 2â^'X based thermoelectric generators enabled by additive and layered manufacturing. Applied Energy, 2017, 192, 24-32.	10.1	24
56	Deformation and strain distribution in plasma sprayed nickel–aluminum coating loaded by a spherical indenter. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 360, 264-274.	5 . 6	23
57	Effect of Deposition Rate on the Stress Evolution of Plasma-Sprayed Yttria-Stabilized Zirconia. Journal of Thermal Spray Technology, 2012, 21, 1224-1233.	3.1	23
58	CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions. Journal of Thermal Spray Technology, 2014, 23, 708-715.	3.1	23
59	Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings. Journal of Thermal Spray Technology, 2015, 24, 454-466.	3.1	23
60	On the Response of Different Particle State Sensors to Deliberate Process Variations. Journal of Thermal Spray Technology, 2011, 20, 1035-1048.	3.1	22
61	The impact of piston thermal barrier coating roughness on high-load diesel operation. International Journal of Engine Research, 2021, 22, 1239-1254.	2.3	22
62	Plasma spray forming metals, intermetallics, and composites. Jom, 1993, 45, 42-49.	1.9	21
63	Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric dc Plasma Spraying. Plasma Chemistry and Plasma Processing, 2010, 30, 761-778.	2.4	21
64	In-situ observation of strain and cracking in coated laminates by digital image correlation. Surface and Coatings Technology, 2017, 328, 211-218.	4.8	21
65	Sustainability of Metal Structures via Spray-Clad Remanufacturing. Jom, 2018, 70, 512-520.	1.9	20
66	Cracking induced tribological behavior changes for the HVOF WC-12Co cermet coatings. Ceramics International, 2019, 45, 4718-4728.	4.8	19
67	Evaluating steam oxidation kinetics of environmental barrier coatings. Journal of the American Ceramic Society, 2022, 105, 590-605.	3.8	19
68	Fabrication of Thermoelectric Devices Using Thermal Spray: Application to Vehicle Exhaust Systems. Journal of Thermal Spray Technology, 2013, 22, 577-587.	3.1	18
69	Neutron Through-Thickness Stress Measurements in Coatings with High Spatial Resolution. Materials Science Forum, 0, 905, 165-173.	0.3	18
70	Characteristics of Conventional and Cascaded Arc Plasma Spray-Deposited Ceramic Under Standard and High-Throughput Conditions. Journal of Thermal Spray Technology, 2019, 28, 690-705.	3.1	18
71	Estimation of Molten Content of the Spray Stream from Analysis of Experimental Particle Diagnostics. Journal of Thermal Spray Technology, 2010, 19, 476-483.	3.1	16
72	Novel synthesis and magnetocaloric assessment of functional oxide perovskites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 97, 245-250.	3.5	15

#	Article	IF	CITATIONS
73	Partnership for accelerated insertion of new technology: case study for thermal spray technology. Integrating Materials and Manufacturing Innovation, 2013, 2, 1-35.	2.6	15
74	Mechanical Behavior of Spray-Coated Metallic Laminates. Journal of Thermal Spray Technology, 2016, 25, 1009-1019.	3.1	15
75	Orientationâ€dependent mechanical and thermal properties of plasmaâ€sprayed ceramics. Journal of the American Ceramic Society, 2018, 101, 2471-2481.	3.8	15
76	Inhibition of molten droplet deposition by substrate surface hydroxides. Surface and Coatings Technology, 2011, 206, 1283-1292.	4.8	14
77	Effect of Powder Injection on the Interfacial Fracture Toughness of Plasma-Sprayed Zirconia. Journal of Thermal Spray Technology, 2013, 22, 166-174.	3.1	14
78	Effect of Deposition Rate and Deposition Temperature on Residual Stress of HVOF-Sprayed Coatings. Journal of Thermal Spray Technology, 2020, 29, 1322-1338.	3.1	14
79	Grain morphology of molybdenum splats plasma-sprayed on glass substrates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 299, 235-240.	5. 6	13
80	Plasma spray coatings for producing next-generation supported membranes. Topics in Catalysis, 2005, 32, 241-249.	2.8	13
81	Characterization of crystallographic texture in plasma-sprayed splats by electron-backscattered diffraction. Surface and Coatings Technology, 2010, 204, 3614-3618.	4.8	13
82	Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining. Journal of Thermal Spray Technology, 2016, 25, 431-440.	3.1	13
83	Interplay between cracking and delamination in incrementally deposited plasma sprayed coatings. Acta Materialia, 2021, 215, 117074.	7.9	13
84	Morphology and microstructure of thermal plasma sprayed silicon splats and coatings. Surface and Coatings Technology, 2006, 201, 1454-1463.	4.8	12
85	Temperatureâ€Gradient Effects in Thermal Barrier Coatings: An Investigation Through Modeling, High Heat Flux Test, and Embedded Sensor. Journal of the American Ceramic Society, 2010, 93, 3418-3426.	3.8	12
86	Nature inspired, multi-functional, damage tolerant thermal spray coatings. Surface and Coatings Technology, 2016, 297, 43-50.	4.8	12
87	Factors Governing Segmentation Crack Characteristics in Air Plasma Sprayed Ceramics. Journal of the European Ceramic Society, 2021, 42, 1077-1077.	5.7	12
88	Processing effects on in-flight particle state and functional coating properties of plasma-sprayed manganese zinc ferrite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 22-31.	3.5	11
89	Development and optimization of thermal sprayed ceramic microfiltration membranes. Journal of Membrane Science, 2015, 489, 106-111.	8.2	11
90	Lowâ€ŧemperature stiffening of air plasmaâ€sprayed 7Âwt% Y 2 O 3 â€stabilized ZrO 2. Journal of the American Ceramic Society, 2020, 103, 2076-2089.	3.8	11

#	Article	IF	Citations
91	Processâ€Controlled Plasmaâ€Sprayed Yttriaâ€Stabilized Zirconia Coatings: New Insights from Ultrasmallâ€Angle Xâ€ray Scattering. Journal of the American Ceramic Society, 2009, 92, 491-500.	3.8	10
92	Determination of Thermal Spray Coating Property with Curvature Measurements. Journal of Thermal Spray Technology, 2013, 22, 1337-1347.	3.1	10
93	Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2â^'x Deposits. Journal of Thermal Spray Technology, 2018, 27, 968-982.	3.1	10
94	The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion. SAE International Journal of Advances and Current Practices in Mobility, 0, 2, 1786-1799.	2.0	10
95	Anisotropic resistivity in plasma-sprayed silicon thick films. Journal of Applied Physics, 2005, 97, 094906.	2.5	9
96	Integrated Study of APS YSZ Coatings with Different Spray Angle. Journal of Thermal Spray Technology, 2013, 22, 110-115.	3.1	9
97	Microstructural Analysis and Transport Properties of Thermally Sprayed Multiple-Layer Ceramic Coatings. Journal of Thermal Spray Technology, 2018, 27, 371-378.	3.1	9
98	Fracture Toughness of Thermal Spray Ceramics: Measurement Techniques and Processing Dependence. Journal of Thermal Spray Technology, 2018, 27, 1076-1089.	3.1	9
99	Thermal Swing Evaluation of Thermal Barrier Coatings for Diesel Engines. Journal of Thermal Spray Technology, 2020, 29, 1943-1957.	3.1	9
100	Dynamic interactions of ingested molten silicate particles with air plasma sprayed thermal barrier coatings. Journal of Materials Research, 2020, 35, 2321-2334.	2.6	9
101	In situ characterization of foreign object damage (FOD) in environmentalâ€barrierâ€coated silicon carbide (SiC) ceramic. Journal of the American Ceramic Society, 2020, 103, 4586-4601.	3.8	9
102	Effect of microstructure on fracture behavior of freestanding plasma sprayed 7 wt.% Y2O3 stabilized ZrO2. Journal of the European Ceramic Society, 2021, 41, 4294-4301.	5.7	9
103	Single-step deposition of Eu-doped Y2O3 phosphor coatings through a precursor plasma spraying technique. Journal of Materials Research, 2002, 17, 2771-2774.	2.6	8
104	Using Thermal Spray and Laser Micromachining to Fabricate Sensors. Journal of Thermal Spray Technology, 2011, 20, 958-966.	3.1	8
105	Thermoelectric Properties of Magnesium Silicide Deposited by Use of an Atmospheric Plasma Thermal Spray. Journal of Electronic Materials, 2014, 43, 2723-2730.	2.2	8
106	Thermoelectric properties of plasma sprayed of calcium cobaltite (Ca2Co2O5). Journal of the European Ceramic Society, 2019, 39, 3749-3755.	5.7	7
107	Hysteretic and time dependent deformation of plasma sprayed zirconia ceramics. Acta Materialia, 2020, 194, 394-402.	7.9	7
108	Impact damage of narrow silicon carbide (SiC) ceramics with and without environmental barrier coatings (EBCs) by various foreign object debris (FOD) simulants. Surface and Coatings Technology, 2021, 407, 126779.	4.8	7

#	Article	IF	CITATIONS
109	Erosion studies on duplex and graded ceramic overlay coatings. Jom, 1996, 48, 51-54.	1.9	6
110	Comparison of the Thermal Transport Property Measurements of Thermally Sprayed Coatings by the Laser and Xenon Flash Techniques. Journal of Thermal Spray Technology, 2007, 16, 444-448.	3.1	6
111	On the surface and system performance of thermally sprayed carbide coatings produced under controlled residual stresses. Surface and Coatings Technology, 2020, 387, 125536.	4.8	6
112	Durability of plasma sprayed thermal barrier coatings with controlled properties part I: For planar disk substrates. Surface and Coatings Technology, 2021, 424, 127678.	4.8	6
113	Shock-Induced Transformations in Hexagonal Boron Nitride by High-Velocity Thermal Spray. Journal of the American Ceramic Society, 2002, 85, 2437-2443.	3.8	5
114	Jet Engine Coatings: Jet Engine Coatings for Resisting Volcanic Ash Damage (Adv. Mater. 21/2011). Advanced Materials, 2011, 23, 2388-2388.	21.0	5
115	On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminatesâ€"Part II: Low-Velocity Thermal Spray Coatings. Journal of Thermal Spray Technology, 2018, 27, 308-318.	3.1	5
116	Dilation Behavior of Thermal Spray Coatings. Journal of Thermal Spray Technology, 2019, 28, 1851-1866.	3.1	5
117	Process-Geometry Interplay in the Deposition and Microstructural Evolution of 7YSZ Thermal Barrier Coatings by Air Plasma Spray. Journal of Thermal Spray Technology, 2020, 29, 560-573.	3.1	5
118	Phase evolution in plasma sprayed Nb2O5 coatings. Journal of the European Ceramic Society, 2021, 41, 5248-5257.	5.7	5
119	Acoustic Emission Responses of Plasma Sprayed Ceramics During Four Point Bend Tests. Ceramic Engineering and Science Proceedings, 0, , 44-50.	0.1	5
120	Electrical Conduction in Thermally Sprayed Thin Metallic Coatings. Materials Research Society Symposia Proceedings, 2005, 890, 1.	0.1	4
121	The role of amorphous phase content on the electrical properties of atmospheric plasma sprayed (Ba,Sr)TiO3 coatings. Ceramics International, 2016, 42, 11010-11014.	4.8	4
122	Effect of Air Plasma Sprayed Flash Bond Coatings on Furnace Cycle Lifetime of Disks and Rods. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	4
123	Transition From GMR to AMR at the Percolation Threshold in Ferrite-Magnetic Alloy Composites. IEEE Transactions on Magnetics, 2012, 48, 2765-2768.	2.1	3
124	Optimization of All-Oxide 2D Layered Thermoelectric Device Fabricated by Plasma Spray. Journal of Thermal Spray Technology, 2020, 29, 1815-1826.	3.1	3
125	Accelerated oxidation during $1350 {\hat A}^{\circ} {\rm C}$ cycling of ytterbium silicate environmental barrier coatings. Journal of the American Ceramic Society, 0, , .	3.8	3
126	Delamination Failure on High-Output Diesel Engine Thermal Barrier Coatings. , 0, , .		3

#	Article	IF	Citations
127	Dielectric Properties of Spray Deposited BaTiO ₃ and Ba _{0.68} Sr _{0.32} TiO ₃ . Materials Research Society Symposia Proceedings, 2001, 698, 361.	0.1	2
128	Interfacial Layer Effects in Ba1-xSrxTiO3 Thick Films prepared by Plasma Spray. Materials Research Society Symposia Proceedings, 2002, 758, 271.	0.1	2
129	Characterization of Interdigital Capacitive Strain Gauges by Direct Write Technology. , 2005, , 237.		2
130	Effect of Injection Angle on Particles In-Flight Characteristics. , 2006, , .		2
131	Focused Ion Beam Study of Ni5Al Single Splat Microstructure. Materials Research Society Symposia Proceedings, 2006, 983, 1.	0.1	2
132	Progress on Searching Optimal Thermal Spray Parameters for Magnesium Silicide. Materials Research Society Symposia Proceedings, 2013, 1490, 173-177.	0.1	2
133	LSM Protective Coatings on Stainless Steel as Interconnects for Solid Oxide Fuel Cells. Materials Research Society Symposia Proceedings, 2014, 1644, 1.	0.1	2
134	Observation of Residual Stress and Fatigue Behavior of Structurally Integrated Thermally Sprayed Nickel Coatings. Journal of Thermal Spray Technology, 2020, 29, 1229-1241.	3.1	2
135	Coupled Thermal and Mechanical Analysis of Thermal Barrier Coatings Under Gradient Exposure. Jom, 2021, 73, 3606-3617.	1.9	2
136	Durability of plasma sprayed Thermal Barrier Coatings with controlled properties part II: Effects of geometrical curvature. Surface and Coatings Technology, 2021, 424, 127671.	4.8	2
137	Laser thermal gradient testing of air plasma sprayed multilayered, multiâ€material thermal barrier coatings. International Journal of Applied Ceramic Technology, 0, , .	2.1	2
138	Microstructure and Electrical Characteristics of Plasma Sprayed Thick Film Mn-Co-Ni Oxide Thermistor. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	1
139	Optimizing Nonlinear Properties of Thermal Sprayed Coatings through Processing Parameters. Materials Research Society Symposia Proceedings, 2006, 977, $1.$	0.1	1
140	Processing-Microstructure-Property Relations in Anisotropic Thermal Sprayed Composites. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	1
141	Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters. Journal of Thermal Spray Technology, 2017, 26, 1994-2004.	3.1	1
142	In Search of Durable Sandphobic Thermal/Environmental Barrier Coatings for Rotorcraft Gas Turbine Engines., 2021,,.		1
143	Damage accumulation in plasma sprayed zirconia under cyclic loading. Journal of the American Ceramic Society, 0, , .	3.8	1
144	Deposition and Characterization of Y3Al5O12 (YAG) Films and Powders by Plasma Spray Synthesis. Materials Research Society Symposia Proceedings, 2000, 658, 6291.	0.1	0

#	Article	IF	CITATIONS
145	Modeling of Interdigital Capacitive Strain Gauges Fabricated Using Direct-Write Technologies. , 2006, , .		O
146	Fabrication of Thermoelectric Devices for Vehicle Exhaust Applications Using Thermal Spray and Laser Processing. , 2012 , , .		0
147	Characterization of the Benefit of APS Flash Coatings in Improving TBC Lifetime. Minerals, Metals and Materials Series, 2020, , 739-746.	0.4	O