
John Y Kuwada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11013804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Congenital myopathy results from misregulation of a muscle Ca ²⁺ channel by mutant Stac3. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E228-E236.	7.1	43
2	Transport of the alpha subunit of the voltage gated Lâ€ŧype calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles. Traffic, 2017, 18, 622-632.	2.7	10
3	Stac3 is a component of the excitation–contraction coupling machinery and mutated in Native American myopathy. Nature Communications, 2013, 4, 1952.	12.8	201
4	Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish. Journal of Biological Chemistry, 2012, 287, 1080-1089.	3.4	11
5	Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain, 2012, 135, 1115-1127.	7.6	114
6	TRPM7 Is Required within Zebrafish Sensory Neurons for the Activation of Touch-Evoked Escape Behaviors. Journal of Neuroscience, 2011, 31, 11633-11644.	3.6	50
7	Na _V 1.6a is required for normal activation of motor circuits normally excited by tactile stimulation. Developmental Neurobiology, 2010, 70, 508-522.	3.0	13
8	Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy. PLoS Genetics, 2009, 5, e1000372.	3.5	201
9	Defective glycinergic synaptic transmission in zebrafish motility mutants. Frontiers in Molecular Neuroscience, 2009, 2, 26.	2.9	41
10	The zebrafish <i>ennui</i> behavioral mutation disrupts acetylcholine receptor localization and motor axon stability. Developmental Neurobiology, 2008, 68, 45-61.	3.0	20
11	Identification and expression of voltageâ€gated calcium channel β subunits in Zebrafish. Developmental Dynamics, 2008, 237, 3842-3852.	1.8	28
12	Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development (Cambridge), 2007, 134, 2771-2781.	2.5	109
13	Non-sense mutations in the dihydropyridine receptor β1 gene, CACNB1, paralyze zebrafish relaxed mutants. Cell Calcium, 2006, 39, 227-236.	2.4	38
14	Molecular cloning and expression of two small leucine-rich proteoglycan (SLRP) genes, dspg3l and optcl, in zebrafish. Gene Expression Patterns, 2006, 6, 482-488.	0.8	3
15	Sema3a1 guides spinal motor axons in a cell- and stage-specific manner in zebrafish. Development (Cambridge), 2006, 133, 937-947.	2.5	38
16	Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor Â-subunit. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8345-8350.	7.1	95
17	The Zebrafish shocked Gene Encodes a Glycine Transporter and Is Essential for the Function of Early Neural Circuits in the CNS. Journal of Neuroscience, 2005, 25, 6610-6620.	3.6	74
18	Chemokine Signaling Guides Axons within the Retina in Zebrafish. Journal of Neuroscience, 2005, 25, 1711-1717.	3.6	69

John Y Kuwada

#	Article	IF	CITATIONS
19	shocked Gene Is Required for the Function of a Premotor Network in the Zebrafish CNS. Journal of Neurophysiology, 2004, 92, 2898-2908.	1.8	27
20	accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development (Cambridge), 2004, 131, 5457-5468.	2.5	63
21	Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish. Mechanisms of Development, 2004, 121, 315-324.	1.7	59
22	Chemokine signaling regulates sensory cell migration in zebrafish. Developmental Biology, 2004, 269, 123-136.	2.0	114
23	Transmembrane Sema4E Guides Branchiomotor Axons to Their Targets in Zebrafish. Journal of Neuroscience, 2003, 23, 4190-4198.	3.6	36
24	The heat-inducible zebrafish hsp70 gene is expressed during normal lens development under non-stress conditions. Mechanisms of Development, 2002, 112, 213-215.	1.7	86
25	Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line Environmental Health Perspectives, 2002, 110, 1041-1046.	6.0	147
26	Growth Cones Utilize both Widespread and Local Directional Cues in the Zebrafish Brain. Developmental Biology, 2000, 219, 364-372.	2.0	5
27	Analysis of a zebrafish semaphorin reveals potential functions in vivo. , 1999, 214, 13-25.		48
28	Molecular cloning and developmental expression of a zebrafish axonal glycoprotein similar to TAG-1. Mechanisms of Development, 1999, 80, 197-201.	1.7	27
29	Role of sonic hedgehog in branchiomotor neuron induction in zebrafish. Mechanisms of Development, 1998, 76, 101-115.	1.7	30
30	Molecular cloning and expression of two novel zebrafish semaphorins. Mechanisms of Development, 1998, 76, 165-168.	1.7	23
31	Regulation ofnetrin-1aExpression by Hedgehog Proteins. Molecular and Cellular Neurosciences, 1998, 11, 194-205.	2.2	28
32	Axon Tracts Correlate withNetrin-1aExpression in the Zebrafish Embryo. Molecular and Cellular Neurosciences, 1997, 9, 293-313.	2.2	91
33	Axonal outgrowth within the abnormal scaffold of brain tracts in a zebrafish mutant. Journal of Neurobiology, 1994, 25, 345-360.	3.6	26
34	The molecular cloning and characterization of potential chick DMâ€GRASP homologs in zebrafish and mouse. Journal of Neurobiology, 1994, 25, 831-845.	3.6	60
35	Growth cone guidance in the zebrafish central nervous system. Current Opinion in Neurobiology, 1992, 2, 31-35.	4.2	8
36	Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos. Neuron, 1992, 8, 869-882.	8.1	95

3

JOHN Y KUWADA

#	Article	IF	CITATIONS
37	A specific brain tract guides follower growth cones in two regions of the zebrafish brain. Journal of Neurobiology, 1992, 23, 845-854.	3.6	19
38	The paired domain-containing nuclear factorPax[b] is expressed in specific commissural interneurons in zebrafish embryos. Journal of Neurobiology, 1992, 23, 933-946.	3.6	64
39	Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. Journal of Comparative Neurology, 1992, 326, 263-272.	1.6	124
40	Elimination of a brain tract increases errors in pathfinding by follower growth cones in the zebrafish embryo. Neuron, 1991, 7, 277-285.	8.1	58
41	Outgrowth by fin motor axons in wildtype and a finless mutant of the Japanese medaka fish. Developmental Biology, 1991, 146, 49-61.	2.0	23
42	Identification of spinal neurons in the embryonic and larval zebrafish. Journal of Comparative Neurology, 1990, 302, 603-616.	1.6	304
43	Development of spinal neurons and tracts in the zebrafish embryo. Journal of Comparative Neurology, 1990, 302, 617-628.	1.6	114
44	Axonal outgrowth by identified neurons in the spinal cord of zebrafish embryos. Experimental Neurology, 1990, 109, 29-34.	4.1	29