Xiong Wen Lou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11012220/xiong-wen-lou-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

98,453 184 308 427 h-index g-index citations papers 9.18 109,035 14.7 455 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
427	Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting <i>Advanced Science</i> , 2022 , e2105135	13.6	15
426	Synthesis of Nitrogen-Doped KMn O with Oxygen Vacancy for Stable Zinc-Ion Batteries <i>Advanced Science</i> , 2022 , e2106067	13.6	9
425	Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries <i>Science</i> , 2022 , 375, 739-745	33.3	52
424	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes <i>Science Advances</i> , 2022 , 8, eabm5766	14.3	12
423	Nitrogen-Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn Metal Anodes <i>Advanced Materials</i> , 2022 , e2200342	24	13
422	Construction of Ni(CN) /NiSe Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. <i>Advanced Materials</i> , 2021 , e2104405	24	15
421	In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. <i>Science Advances</i> , 2021 , 7, eabk0919	14.3	17
420	Rationally Designed Mn O -ZnMn O Hollow Heterostructures from Metal-Organic Frameworks for Stable Zn-Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25793-25798	16.4	6
419	Synergetic Cobalt-Copper-Based Bimetal Drganic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. <i>Angewandte Chemie</i> , 2021 , 133, 26601	3.6	O
418	Synergetic Cobalt-Copper-Based Bimetal-Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26397-26402	16.4	17
417	Loading Single-Ni Atoms on Assembled Hollow N-Rich Carbon Plates for Efficient CO Electroreduction. <i>Advanced Materials</i> , 2021 , e2105204	24	12
416	Nitrogen-Doped Amorphous Zn-Carbon Multichannel Fibers for Stable Lithium Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8515-8520	16.4	44
415	Nitrogen-Doped Amorphous Zntarbon Multichannel Fibers for Stable Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2021 , 133, 8596-8601	3.6	9
414	Trimetallic Spinel NiCo2NFexO4 Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. <i>Angewandte Chemie</i> , 2021 , 133, 11947-11952	3.6	7
413	Exposing unsaturated Cu-O sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution. <i>Science Advances</i> , 2021 , 7,	14.3	53
412	Trimetallic Spinel NiCo Fe O Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11841-11846	16.4	78
411	Lotus-Root-Like Carbon Fibers Embedded with Ni-Co Nanoparticles for Dendrite-Free Lithium Metal Anodes. <i>Advanced Materials</i> , 2021 , 33, e2100608	24	38

(2020-2021)

410	Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20102-20118	16.4	38	
409	A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. <i>Science Advances</i> , 2021 , 7,	14.3	58	
408	Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. <i>Angewandte Chemie</i> , 2021 , 133, 20262-20278	3.6	6	
4 ⁰ 7	Engineering Platinum © obalt Nano-alloys in Porous Nitrogen-Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. <i>Angewandte Chemie</i> , 2021 , 133, 19216-19221	3.6	1	
406	Atomically Dispersed Reactive Centers for Electrocatalytic CO Reduction and Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13177-13196	16.4	60	
405	Atomically Dispersed Reactive Centers for Electrocatalytic CO2 Reduction and Water Splitting. <i>Angewandte Chemie</i> , 2021 , 133, 13285-13304	3.6	10	
404	Engineering Platinum-Cobalt Nano-alloys in Porous Nitrogen-Doped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 190)68-1 9 0)7 3 3	
403	Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution. <i>Advanced Materials</i> , 2021 , 33, e2103004	24	30	
402	Construction of Coln Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn-ion Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 22363-22368	3.6	2	
401	Construction of Co-Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn-ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22189-22194	16.4	48	
400	Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. <i>Advanced Materials</i> , 2021 , 33, e2008376	24	24	
399	Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. <i>Angewandte Chemie</i> , 2021 , 133, 23067	3.6	O	
398	Phosphorized CoNi S Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22885-22891	16.4	47	
397	Biomass-based materials for green lithium secondary batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 1326-1379	35.4	55	
396	Formation of Super-Assembled TiO /Zn/N-Doped Carbon Inverse Opal Towards Dendrite-Free Zn Anodes <i>Angewandte Chemie - International Edition</i> , 2021 , e202115649	16.4	13	
395	Formation of Hierarchical FeCoS2ttoS2 Double-Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO2. <i>Angewandte Chemie</i> , 2020 , 132, 12016-12020	3.6	14	
394	Implanting Isolated Ru Atoms into Edge-Rich Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2020 , 10, 2000882	21.8	70	
393	Double-Shelled C@MoS2 Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2020 , 132, 15973-15977	3.6	8	

392	Double-Shelled C@MoS Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15839-15843	16.4	51
391	Direct Conversion of Rice Husks to Nanostructured SiC/C for CO Photoreduction. <i>Advanced Materials</i> , 2020 , 32, e2001560	24	45
390	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. <i>Science Advances</i> , 2020 , 6, eaaz3112	14.3	104
389	Designed Formation of Double-Shelled Ni-Fe Layered-Double-Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2020 , 32, e1906432	24	167
388	NiMn-Based Bimetal Drganic Framework Nanosheets Supported on Multi-Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. <i>Angewandte Chemie</i> , 2020 , 132, 18391-18396	3.6	13
387	Metal Atom-Doped Co O Hierarchical Nanoplates for Electrocatalytic Oxygen Evolution. <i>Advanced Materials</i> , 2020 , 32, e2002235	24	151
386	NiMn-Based Bimetal-Organic Framework Nanosheets Supported on Multi-Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18234-18239	16.4	97
385	Rationally Designed Three-Layered Cu2S@Carbon@MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage. <i>Angewandte Chemie</i> , 2020 , 132, 7245-7250	3.6	20
384	Rationally Designed Three-Layered Cu S@Carbon@MoS Hierarchical Nanoboxes for Efficient Sodium Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7178-7183	16.4	127
383	Fabrication of Heterostructured Fe2TiO5IIiO2 Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 8205-8209	3.6	21
382	Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. <i>Advanced Functional Materials</i> , 2020 , 30, 1910274	15.6	362
381	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. <i>Joule</i> , 2020 , 4, 45-68	27.8	288
380	Fabrication of Heterostructured Fe TiO -TiO Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8128-81	1 6.4	39
379	Formation of Hierarchical FeCoS -CoS Double-Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11918-11922	16.4	117
378	Confining Sub-Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity. <i>Advanced Materials</i> , 2020 , 32, e1901349	24	143
377	Synthesis of Copper-Substituted CoS2@CuxS Double-Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. <i>Angewandte Chemie</i> , 2020 , 132, 2666-2670	3.6	24
376	Synthesis of Copper-Substituted CoS @Cu S Double-Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2644-2648	16.4	96
375	Nitrogen-Doped Cobalt Pyrite Yolk-Shell Hollow Spheres for Long-Life Rechargeable Zn-Air Batteries. <i>Advanced Science</i> , 2020 , 7, 2001178	13.6	103

(2019-2020)

374	Co O Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19914-19918	16.4	79
373	Co3O4 Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. <i>Angewandte Chemie</i> , 2020 , 132, 20086-20090	3.6	13
372	Direct probing of atomically dispersed Ru species over multi-edged TiO for highly efficient photocatalytic hydrogen evolution. <i>Science Advances</i> , 2020 , 6,	14.3	62
371	Recent Advances on Mixed Metal Sulfides for Advanced Sodium-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e2002976	24	113
370	Fabrication of CdS Frame-in-Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visible-Light Irradiation. <i>Advanced Materials</i> , 2020 , 32, e2004561	24	53
369	Metal Drganic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020 , 132, 4662-4678	3.6	58
368	Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4634-4650	16.4	232
367	Hierarchical Hollow Heterostructures for Photocatalytic CO2 Reduction and Water Splitting. <i>Small Methods</i> , 2020 , 4, 1900586	12.8	103
366	Photocatalysis: Supporting Ultrathin ZnIn2S4 Nanosheets on Co/N-Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H2 Generation (Adv. Mater. 41/2019). <i>Advanced Materials</i> , 2019 , 31, 1970291	24	38
365	A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2019 , 12, 648-655	35.4	212
364	Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversion. <i>Advanced Materials</i> , 2019 , 31, e1900281	24	191
363	Ultrafine Dual-Phased Carbide Nanocrystals Confined in Porous Nitrogen-Doped Carbon Dodecahedrons for Efficient Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2019 , 31, e1900699	24	191
362	Synthesis of CuS@CoS2 Double-Shelled Nanoboxes with Enhanced Sodium Storage Properties. <i>Angewandte Chemie</i> , 2019 , 131, 7821-7825	3.6	55
361	Sodium-Ion Batteries: A Ternary Fe1\(\mathbb{R}\)S@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries (Adv. Energy Mater. 9/2019). Advanced Energy Materials, 2019, 9, 1970026	21.8	9
360	Bullet-like Cu9S5 Hollow Particles Coated with Nitrogen-Doped Carbon for Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 7826-7830	3.6	36
359	Synthesis of CuS@CoS Double-Shelled Nanoboxes with Enhanced Sodium Storage Properties. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7739-7743	16.4	120
358	Bullet-like Cu S Hollow Particles Coated with Nitrogen-Doped Carbon for Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7744-7748	16.4	108
357	Efficient Electrochemical Reduction of CO2 to HCOOH over Sub-2 nm SnO2 Quantum Wires with Exposed Grain Boundaries. <i>Angewandte Chemie</i> , 2019 , 131, 8587	3.6	

356	Efficient Electrochemical Reduction of CO to HCOOH over Sub-2 nm SnO Quantum Wires with Exposed Grain Boundaries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8499-8503	16.4	193
355	Co-Fe Alloy/N-Doped Carbon Hollow Spheres Derived from Dual Metal-Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction. <i>Small</i> , 2019 , 15, e1805324	11	120
354	Construction of CoO/Co-Cu-S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. <i>Angewandte Chemie</i> , 2019 , 131, 15587-15593	3.6	25
353	Construction of CoO/Co-Cu-S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15441-15447	16.4	217
352	Construction of Hierarchical Co-Fe Oxyphosphide Microtubes for Electrocatalytic Overall Water Splitting. <i>Advanced Science</i> , 2019 , 6, 1900576	13.6	155
351	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. <i>Matter</i> , 2019 , 1, 90-114	12.7	159
350	Supporting Ultrathin ZnIn S Nanosheets on Co/N-Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H Generation. <i>Advanced Materials</i> , 2019 , 31, e1903404	24	172
349	Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn-Air Batteries. <i>Advanced Materials</i> , 2019 , 31, e1902339	24	219
348	Bi O Nanosheets Grown on Multi-Channel Carbon Matrix to Catalyze Efficient CO Electroreduction to HCOOH. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13828-13833	16.4	154
347	Bi2O3 Nanosheets Grown on Multi-Channel Carbon Matrix to Catalyze Efficient CO2 Electroreduction to HCOOH. <i>Angewandte Chemie</i> , 2019 , 131, 13966-13971	3.6	25
346	Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a N-Doped Carbon Matrix. <i>Advanced Materials</i> , 2019 , 31, e1904548	24	151
345	Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO2 Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 17396-17400	3.6	12
344	Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17236-172	2 46 .4	123
343	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. <i>Science</i> , 2019 , 366, 850-856	33.3	545
342	Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. <i>Science Advances</i> , 2019 , 5, eaav6009	14.3	361
341	Ordered colloidal clusters constructed by nanocrystals with valence for efficient CO photoreduction. <i>Science Advances</i> , 2019 , 5, eaax5095	14.3	41
340	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. <i>Energy and Environmental Science</i> , 2019 , 12, 3348-3355	35.4	147
339	Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion. <i>Advanced Materials</i> , 2019 , 31, e1706825	24	293

(2018-2019)

338	A Ternary Fe1MS@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803052	21.8	137
337	Metallic Porous Iron Nitride and Tantalum Nitride Single Crystals with Enhanced Electrocatalysis Performance. <i>Advanced Materials</i> , 2019 , 31, e1806552	24	33
336	Hierarchical Microboxes Constructed by SnS Nanoplates Coated with Nitrogen-Doped Carbon for Efficient Sodium Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 760-763	16.4	120
335	Hierarchical Microboxes Constructed by SnS Nanoplates Coated with Nitrogen-Doped Carbon for Efficient Sodium Storage. <i>Angewandte Chemie</i> , 2019 , 131, 770-773	3.6	36
334	Synthesis of Cobalt Sulfide Multi-shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 2701-2705	3.6	27
333	Synthesis of Cobalt Sulfide Multi-shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2675-2679	16.4	117
332	Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. <i>Energy and Environmental Science</i> , 2019 , 12, 164-168	35.4	156
331	Ultrasmall MoO Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1804883	24	82
330	Formation of NiCo2V2O8 YolkDouble Shell Spheres with Enhanced Lithium Storage Properties. <i>Angewandte Chemie</i> , 2018 , 130, 2949-2953	3.6	12
329	Realization of Walnut-Shaped Particles with Macro-/Mesoporous Open Channels through Pore Architecture Manipulation and Their Use in Electrocatalytic Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6176-6180	16.4	128
328	Realization of Walnut-Shaped Particles with Macro-/Mesoporous Open Channels through Pore Architecture Manipulation and Their Use in Electrocatalytic Oxygen Reduction. <i>Angewandte Chemie</i> , 2018 , 130, 6284-6288	3.6	16
327	Formation of Hierarchical Cu-Doped CoSe Microboxes via Sequential Ion Exchange for High-Performance Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1706668	24	311
326	Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. <i>Joule</i> , 2018 , 2, 725-735	27.8	281
325	Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. <i>CheM</i> , 2018 , 4, 972-996	16.2	410
324	Formation of NiCo V O Yolk-Double Shell Spheres with Enhanced Lithium Storage Properties. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2899-2903	16.4	101
323	Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. <i>Energy and Environmental Science</i> , 2018 , 11, 306-310	35.4	281
322	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. <i>Science Advances</i> , 2018 , 4, eaao6657	14.3	344
321	Graphene Layers-Wrapped Fe/Fe5C2 Nanoparticles Supported on N-doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. <i>Advanced Energy Materials</i> , 2018 , 8, 1702476	21.8	162

320	Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. <i>CheM</i> , 2018 , 4, 162-173	16.2	170
319	Porous Iron¶obalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal¶organic Framework Hybrids for Oxygen Reduction. <i>Advanced Functional Materials</i> , 2018 , 28, 1706	57 3 58 ⁶	180
318	Construction of hierarchical Ni LoP hollow nanobricks with oriented nanosheets for efficient overall water splitting. <i>Energy and Environmental Science</i> , 2018 , 11, 872-880	35.4	564
317	Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion. <i>Advanced Energy Materials</i> , 2018 , 8, 1701592	21.8	503
316	Formation of Polypyrrole-Coated Sb2Se3 Microclips with Enhanced Sodium-Storage Properties. <i>Angewandte Chemie</i> , 2018 , 130, 10007-10011	3.6	28
315	Construction of Single-Crystalline Prussian Blue Analog Hollow Nanostructures with Tailorable Topologies. <i>CheM</i> , 2018 , 4, 1967-1982	16.2	91
314	The Design and Synthesis of Hollow Micro-/Nanostructures: Present and Future Trends. <i>Advanced Materials</i> , 2018 , 30, e1800939	24	218
313	A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2018 , 11, 1980-1984	35.4	173
312	A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances. <i>Science Advances</i> , 2018 , 4, eaat1687	14.3	172
311	Necklace-Like Structures Composed of Fe N@C Yolk-Shell Particles as an Advanced Anode for Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1800525	24	119
310	Formation of Polypyrrole-Coated Sb Se Microclips with Enhanced Sodium-Storage Properties. Angewandte Chemie - International Edition, 2018 , 57, 9859-9863	16.4	131
309	Construction of Complex Co O @Co V O Hollow Structures from Metal-Organic Frameworks with Enhanced Lithium Storage Properties. <i>Advanced Materials</i> , 2018 , 30, 1702875	24	213
308	Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 172-176	16.4	375
307	Titelbild: Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution (Angew. Chem. 1/2018). <i>Angewandte Chemie</i> , 2018 , 130, 1-1	3.6	53
306	Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. <i>Angewandte Chemie</i> , 2018 , 130, 178	- 1 82	50
305	Construction of Heterostructured Fe2O3-TiO2 Microdumbbells for Photoelectrochemical Water Oxidation. <i>Angewandte Chemie</i> , 2018 , 130, 15296-15300	3.6	21
304	Construction of Heterostructured Fe O -TiO Microdumbbells for Photoelectrochemical Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15076-15080	16.4	97
303	Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2018 , 28, 1807086	15.6	237

302	Metal-Organic Framework Hybrid-Assisted Formation of Co O /Co-Fe Oxide Double-Shelled Nanoboxes for Enhanced Oxygen Evolution. <i>Advanced Materials</i> , 2018 , 30, e1801211	24	287
301	Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10944-10948	16.4	205
300	Nickellron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 11110-11114	3.6	23
299	General Synthesis of Multishell Mixed-Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 2426-2429	3.6	36
298	General Synthesis of Multishell Mixed-Metal Oxyphosphide Particles with Enhanced Electrocatalytic Activity in the Oxygen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2386-2389	16.4	222
297	Complex Hollow Nanostructures: Synthesis and Energy-Related Applications. <i>Advanced Materials</i> , 2017 , 29, 1604563	24	529
296	Coordination Polymers Derived General Synthesis of Multishelled Mixed Metal-Oxide Particles for Hybrid Supercapacitors. <i>Advanced Materials</i> , 2017 , 29, 1605902	24	296
295	Carbon-Incorporated Nickel©obalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. <i>Angewandte Chemie</i> , 2017 , 129, 3955-3958	3.6	164
294	Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 389	97 ¹ 9900	o ⁵⁸²
293	A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na CoO Microspheres. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5801-5805	16.4	157
292	Formation of Double-Shelled Zinctobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. <i>Angewandte Chemie</i> , 2017 , 129, 7247-7251	3.6	55
291	Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7141-7145	16.4	326
290	A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na0.7CoO2 Microspheres. <i>Angewandte Chemie</i> , 2017 , 129, 5895-5899	3.6	22
289	An Improved LiBeS2 Battery with High Energy Density and Long Cycle Life. <i>Advanced Energy Materials</i> , 2017 , 7, 1700281	21.8	91
288	Structure-designed synthesis of FeS2@C yolkEhell nanoboxes as a high-performance anode for sodium-ion batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 1576-1580	35.4	411
287	Complex Cobalt Sulfide Nanobubble Cages with Enhanced Electrochemical Properties. <i>Small Methods</i> , 2017 , 1, 1700158	12.8	30
286	Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. <i>Energy and Environmental Science</i> , 2017 , 10, 1777-1783	35.4	654
285	Hollow Nanostructures of Molybdenum Sulfides for Electrochemical Energy Storage and Conversion. <i>Small Methods</i> , 2017 , 1, 1600020	12.8	76

284	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS Host for Advanced Li-SeS Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16003-16007	16.4	88
283	Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS2 Host for Advanced LiBeS2 Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 16219-16223	3.6	18
282	A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries. <i>Joule</i> , 2017 , 1, 576-587	27.8	194
281	Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion. <i>Advanced Materials</i> , 2017 , 29, 1703614	24	522
280	Oriented assembly of anisotropic nanoparticles into frame-like superstructures. <i>Science Advances</i> , 2017 , 3, e1700732	14.3	114
279	Formation of Ni-Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. <i>Advanced Materials</i> , 2017 , 29, 1703870	24	327
278	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. <i>Angewandte Chemie</i> , 2017 , 129, 14295-143	600 ⁶	21
277	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14107-14112	16.4	91
276	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. <i>Joule</i> , 2017 , 1, 77-107	27.8	524
275	Rational Design of Three-Layered TiO @Carbon@MoS Hierarchical Nanotubes for Enhanced Lithium Storage. <i>Advanced Materials</i> , 2017 , 29, 1702724	24	257
274	Formation of Single-Holed Cobalt/N-Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Media. <i>Advanced Science</i> , 2017 , 4, 1700247	13.6	159
273	Hierarchical Nanotubes Constructed by Carbon-Coated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage. <i>Angewandte Chemie</i> , 2017 , 129, 12370-12373	3.6	44
272	Hierarchical Nanotubes Constructed by Carbon-Coated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12202-12205	16.4	165
271	Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. <i>Science Advances</i> , 2017 , 3, eaap9252	14.3	639
270	Formation of Onion-Like NiCo S Particles via Sequential Ion-Exchange for Hybrid Supercapacitors. <i>Advanced Materials</i> , 2017 , 29, 1605051	24	453
269	A dual-metalBrganic-framework derived electrocatalyst for oxygen reduction. <i>Energy and Environmental Science</i> , 2016 , 9, 3092-3096	35.4	283
268	Formation of Ni-Co-MoS Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 9006-9011	24	425
267	Formation of CoS2 Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. <i>Angewandte Chemie</i> , 2016 , 128, 13620-13624	3.6	38

(2016-2016)

266	Formation of CoS Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13422-13426	16.4	288
265	Chemically Assisted Formation of Monolayer Colloidosomes on Functional Particles. <i>Advanced Materials</i> , 2016 , 28, 9596-9601	24	88
264	A metalörganic framework-derived bifunctional oxygen electrocatalyst. <i>Nature Energy</i> , 2016 , 1,	62.3	1622
263	A universal cooperative assembly-directed method for coating of mesoporous TiO(2) nanoshells with enhanced lithium storage properties. <i>Science Advances</i> , 2016 , 2, e1501554	14.3	174
262	Formation of Triple-Shelled Molybdenum P olydopamine Hollow Spheres and Their Conversion into MoO2/Carbon Composite Hollow Spheres for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 14888-14892	3.6	33
261	Formation of Triple-Shelled Molybdenum-Polydopamine Hollow Spheres and Their Conversion into MoO /Carbon Composite Hollow Spheres for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14668-14672	16.4	152
260	A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. <i>Nature Communications</i> , 2016 , 7, 13065	17.4	511
259	Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. <i>Science Advances</i> , 2016 , 2, e1600021	14.3	327
258	Formation of Prussian-Blue-Analog Nanocages via a Direct Etching Method and their Conversion into Ni-Co-Mixed Oxide for Enhanced Oxygen Evolution. <i>Advanced Materials</i> , 2016 , 28, 4601-5	24	456
257	Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 4050-4054	3.6	51
256	Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties. <i>Angewandte Chemie</i> , 2016 , 128, 7553-7557	3.6	13
255	Formation of Uniform N-doped Carbon-Coated SnO2 Submicroboxes with Enhanced Lithium Storage Properties. <i>Advanced Energy Materials</i> , 2016 , 6, 1600451	21.8	233
254	Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. <i>Angewandte Chemie</i> , 2016 , 128, 6094-6097	3.6	56
253	InnenrEktitelbild: Synthesis of Highly Uniform MolybdenumElycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries (Angew. Chem. 26/2016). <i>Angewandte Chemie</i> , 2016 , 128, 7675-7675	3.6	2
252	Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 2314-2318	35.4	356
251	Sodium Ion Batteries: Free-Standing Nitrogen-Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium-Ion Batteries with Ultralong Cycle Life and Superior Rate Capability (Adv. Energy Mater. 7/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	1
250	Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7427-31	16.4	131
249	Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. <i>Energy and Environmental Science</i> , 2016 , 9, 862-866	35.4	358

248	Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties. <i>Nanoscale</i> , 2016 , 8, 8384-9	7.7	123
247	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. <i>Energy and Environmental Science</i> , 2016 , 9, 1246-1250	35.4	706
246	MetalBrganic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. <i>Energy and Environmental Science</i> , 2016 , 9, 107-111	35.4	427
245	One-dimensional metal oxide-carbon hybrid nanostructures for electrochemical energy storage. <i>Nanoscale Horizons</i> , 2016 , 1, 27-40	10.8	102
244	Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9514-8	16.4	270
243	Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage. <i>Advanced Energy Materials</i> , 2016 , 6, 1501333	21.8	563
242	Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3982-6	16.4	447
241	Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. <i>Angewandte Chemie</i> , 2016 , 128, 9666-9670	3.6	31
240	Hierarchical Tubular Structures Composed of Co3 O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5990-3	16.4	355
239	Synthesis of Highly Uniform Molybdenum-Glycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7423-6	16.4	251
238	Free-Standing Nitrogen-Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium-Ion Batteries with Ultralong Cycle Life and Superior Rate Capability. <i>Advanced Energy Materials</i> , 2016 , 6, 1502217	21.8	390
237	Synthesis of Highly Uniform Molybdenum © lycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 7549-7552	3.6	28
236	General Formation of M-MoS3 (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 92-7	24	328
235	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 3061-3070	35.4	502
234	Frontispiece: Formation of CoS2 Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2016 , 55,	16.4	1
233	Frontispiece: Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. <i>Angewandte Chemie - International Edition</i> , 2016 , 55,	16.4	3
232	Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 2881-2891	35.4	178
231	Encapsulating Sn Nanoparticles in Amorphous Carbon Nanotubes for Enhanced Lithium Storage Properties. <i>Advanced Energy Materials</i> , 2016 , 6, 1601177	21.8	195

(2015-2016)

230	Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11306-11	16.4	205
229	Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5331-5	16.4	379
228	Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage. <i>Chemical Communications</i> , 2015 , 51, 6921-4	5.8	54
227	Formation of Nickel Sulfide Nanoframes from Metal Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties. <i>Angewandte Chemie</i> , 2015 , 127, 5421-5425	3.6	115
226	Platinum multicubes prepared by ni(2+) -mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5666-71	16.4	72
225	Rutile TiO2 Submicroboxes with Superior Lithium Storage Properties. <i>Angewandte Chemie</i> , 2015 , 127, 4073-4076	3.6	11
224	Designed Formation of CoD/INiCoDDouble-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5590-5	16.4	88o
223	Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. <i>Energy and Environmental Science</i> , 2015 , 8, 1480-1483	35.4	166
222	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. <i>Nature Communications</i> , 2015 , 6, 6694	17.4	941
221	Ultrathin MoSiNanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7395-8	16.4	548
220	Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. <i>Energy and Environmental Science</i> , 2015 , 8, 1707-171	₁ 3 _{5·4}	194
219	Formation of Uniform Fe3 O4 Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties. <i>Advanced Materials</i> , 2015 , 27, 4097-101	24	346
218	Pie-like electrode design for high-energy density lithium-sulfur batteries. <i>Nature Communications</i> , 2015 , 6, 8850	17.4	391
217	Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1868-72	16.4	618
216	Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. <i>Small</i> , 2015 , 11, 804-8	11	211
215	Self-Templated Formation of Uniform NiCo2O4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors. <i>Angewandte Chemie</i> , 2015 , 127, 1888-1892	3.6	61
214	Preparation of carbon-coated NiCo2 O4 @SnO2 hetero-nanostructures and their reversible lithium storage properties. <i>Small</i> , 2015 , 11, 432-6	11	88
213	Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. <i>Advanced Energy Materials</i> , 2015 , 5, 1401172	21.8	454

212	Platinum Multicubes Prepared by Ni2+-Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. <i>Angewandte Chemie</i> , 2015 , 127, 5758-5763	3.6	17
211	Hierarchical 野Mo2C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. <i>Angewandte Chemie</i> , 2015 , 127, 15615-15619	3.6	105
210	General Formation of M(x)Co(3-x)S4 (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10521-4	16.4	220
209	Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12886-90	16.4	691
208	On the Origin and Underappreciated Effects of Ion Doping in Silica. <i>Small</i> , 2015 , 11, 4351-65	11	24
207	Ultrathin MoS2 Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. <i>Angewandte Chemie</i> , 2015 , 127, 7503-7506	3.6	86
206	Hierarchical Tubular Structures Composed of Mn-Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties. <i>Advanced Functional Materials</i> , 2015 , 25, 5184-5189	15.6	116
205	Hierarchical #Mo2 C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15395-9	16.4	485
204	Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 13078-13082	3.6	93
203	General Formation of MxCo3\(\text{NS}\) (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors. <i>Angewandte Chemie</i> , 2015 , 127, 10667-10670	3.6	99
202	A Flexible Quasi-Solid-State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V2O5 Nanosheets on Carbon Nanofibers. <i>Advanced Energy Materials</i> , 2015 , 5, 1500753	21.8	178
201	Formation of Yolk-Shelled Nito Mixed Oxide Nanoprisms with Enhanced Electrochemical Performance for Hybrid Supercapacitors and Lithium Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1500981	21.8	258
200	Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. <i>Nature Communications</i> , 2015 , 6, 6512	17.4	1056
199	One-Pot Synthesis of Ptto Alloy Nanowire Assemblies with Tunable Composition and Enhanced Electrocatalytic Properties. <i>Angewandte Chemie</i> , 2015 , 127, 3868-3872	3.6	85
198	Porosity-Controlled TiNb2O7 Microspheres with Partial Nitridation as A Practical Negative Electrode for High-Power Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1401945	21.8	122
197	Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties. <i>Nanoscale</i> , 2015 , 7, 4411-4	7.7	49
196	Rutile TiO2 submicroboxes with superior lithium storage properties. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4001-4	16.4	155

(2014-2015)

194	One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3797-801	16.4	348
193	Mixed transition-metal oxides: design, synthesis, and energy-related applications. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1488-504	16.4	1730
192	Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. <i>Energy and Environmental Science</i> , 2014 , 7, 1013	35.4	210
191	Strongly coupled carbon nanofiberthetal oxide coaxial nanocables with enhanced lithium storage properties. <i>Energy and Environmental Science</i> , 2014 , 7, 302-305	35.4	135
190	Hierarchical tubular structures constructed by carbon-coated FeDIhanorods for highly reversible lithium storage. <i>Small</i> , 2014 , 10, 1741-5	11	101
189	Formation of Ni(x)Co(3-x)SIhollow nanoprisms with enhanced pseudocapacitive properties. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3711-4	16.4	368
188	One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability. <i>Small</i> , 2014 , 10, 2815-9, 2742	11	107
187	General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9041-4	16.4	204
186	Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. <i>Nature Communications</i> , 2014 , 5, 5002	17.4	792
185	A Nanosheets-on-Channel Architecture Constructed from MoS2 and CMK-3 for High-Capacity and Long-Cycle-Life Lithium Storage. <i>Advanced Energy Materials</i> , 2014 , 4, 1400902	21.8	166
184	TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12590-3	16.4	77
183	Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. <i>Energy and Environmental Science</i> , 2014 , 7, 2592	35.4	232
182	High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. <i>Energy and Environmental Science</i> , 2014 , 7, 3709-3719	35.4	506
181	A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. <i>Nature Communications</i> , 2014 , 5, 4921	17.4	236
180	Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. <i>Energy and Environmental Science</i> , 2014 , 7, 3302-330	6 ^{35.4}	436
179	Bowl-like SnO2 @carbon hollow particles as an advanced anode material for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12803-7	16.4	426
178	Recent progress on graphene-based hybrid electrocatalysts. <i>Materials Horizons</i> , 2014 , 1, 379-399	14.4	277
177	General Synthesis of Multi-Shelled Mixed Metal Oxide Hollow Spheres with Superior Lithium Storage Properties. <i>Angewandte Chemie</i> , 2014 , 126, 9187-9190	3.6	72

176	Citrate-Assisted Growth of NiCo2O4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. <i>Advanced Energy Materials</i> , 2014 , 4, 1400422	21.8	209
175	Formation of Mesoporous Heterostructured BiVO4/Bi2S3 Hollow Discoids with Enhanced Photoactivity. <i>Angewandte Chemie</i> , 2014 , 126, 6027-6031	3.6	85
174	Strongly coupled NiCo(2)O(4)-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction. <i>Advanced Materials</i> , 2014 , 26, 2408-12	24	257
173	TiO2 Hollow Spheres Composed of Highly Crystalline Nanocrystals Exhibit Superior Lithium Storage Properties. <i>Angewandte Chemie</i> , 2014 , 126, 12798-12801	3.6	41
172	Bowl-like SnO2@Carbon Hollow Particles as an Advanced Anode Material for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2014 , 126, 13017-13021	3.6	46
171	Gemischte Bergangsmetalloxide: Design, Synthese und energierelevante Anwendungen. <i>Angewandte Chemie</i> , 2014 , 126, 1512-1530	3.6	86
170	Formation of NixCo3\(\mathbb{Q}\)S4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. Angewandte Chemie, 2014 , 126, 3785-3788	3.6	118
169	General Formation of MS (M = Ni, Cu, Mn) Box-in-Box Hollow Structures with Enhanced Pseudocapacitive Properties. <i>Advanced Functional Materials</i> , 2014 , 24, 7440-7446	15.6	260
168	Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage. <i>Chemistry - A European Journal</i> , 2014 , 20, 5219-23	4.8	149
167	Formation of mesoporous heterostructured BiVO[Bis[hollow discoids with enhanced photoactivity. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5917-21	16.4	250
166	Hierarchical MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors. <i>Small</i> , 2014 , 10, 3181-6	11	107
165	Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. <i>Materials Horizons</i> , 2014 , 1, 133-138	14.4	61
164	A General Method to Grow Porous Fe2O3 Nanosheets on Substrates as Integrated Electrodes for Lithium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400050	4.6	71
163	Metal-organic-frameworks-derived general formation of hollow structures with high complexity. Journal of the American Chemical Society, 2013 , 135, 10664-72	16.4	464
162	Controlled synthesis of hierarchical CoxMn3NO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. <i>Energy and Environmental Science</i> , 2013 , 6, 2664-2671	35.4	249
161	Formation of MS-Ag and MS (M = Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities. <i>Nanoscale</i> , 2013 , 5, 10864-7	7.7	43
160	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. <i>Energy and Environmental Science</i> , 2013 , 6, 3619	35.4	307
159	Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12337-40	16.4	182

(2013-2013)

158	Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. <i>Nano Today</i> , 2013 , 8, 598-618	17.9	292
157	Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. <i>Energy and Environmental Science</i> , 2013 , 6, 87-91	35.4	300
156	Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. <i>Advanced Materials</i> , 2013 , 25, 5807-13	24	2285
155	General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 8805-8809	3.6	48
154	Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage. <i>CrystEngComm</i> , 2013 , 15, 9332	3.3	111
153	Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. <i>Energy and Environmental Science</i> , 2013 , 6, 974	35.4	200
152	Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2226-30	16.4	244
151	Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. <i>Nanoscale</i> , 2013 , 5, 877-81	7.7	160
150	TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 122-127	13	123
149	Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. <i>Chemistry - A European Journal</i> , 2013 , 19, 494-500	4.8	85
148	SnOEbased nanomaterials: synthesis and application in lithium-ion batteries. <i>Small</i> , 2013 , 9, 1877-93	11	651
147	Hierarchical tubular structures constructed by carbon-coated SnO(2) nanoplates for highly reversible lithium storage. <i>Advanced Materials</i> , 2013 , 25, 2589-93	24	286
146	General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 976-9	24	884
145	Controlled growth of NiCoDInanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. <i>Scientific Reports</i> , 2013 , 3, 1470	4.9	393
144	Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 5636-9	16.4	310
143	Mesoporous LilliDhollow spheres with enhanced lithium storage capability. <i>Advanced Materials</i> , 2013 , 25, 2296-300	24	332
142	A flexible TiO(B)-based battery electrode with superior power rate and ultralong cycle life. <i>Advanced Materials</i> , 2013 , 25, 3462-7	24	274
141	Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co3O4 Hollow Nanoparticles as Self-Supported Electrodes for Electrochemical Capacitors. <i>Advanced Functional Materials</i> , 2013 , 23, 3909-3915	15.6	215

140	Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8579-83	16.4	167
139	Template-Assisted Formation of Rattle-type V2O5 Hollow Microspheres with Enhanced Lithium Storage Properties. <i>Advanced Functional Materials</i> , 2013 , 23, 5669-5674	15.6	140
138	Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. <i>Energy and Environmental Science</i> , 2013 , 6, 1476	35.4	239
137	Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. <i>Chemistry - A European Journal</i> , 2013 , 19, 10804-8	4.8	327
136	General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8643-7	16.4	179
135	Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. <i>Chemical Communications</i> , 2013 , 49, 137-9	5.8	581
134	Mesoporous single-crystal CoSn(OH)6 hollow structures with multilevel interiors. <i>Scientific Reports</i> , 2013 , 3, 1391	4.9	115
133	Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9480-5	16.4	377
132	Template-Free Synthesis of VO2 Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 2282-2286	3.6	172
131	Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4165-8	16.4	209
130	Carbon-Coated CdS Petalous Nanostructures with Enhanced Photostability and Photocatalytic Activity. <i>Angewandte Chemie</i> , 2013 , 125, 5746-5749	3.6	106
129	Innentitelbild: Carbon-Coated CdS Petalous Nanostructures with Enhanced Photostability and Photocatalytic Activity (Angew. Chem. 21/2013). <i>Angewandte Chemie</i> , 2013 , 125, 5520-5520	3.6	3
128	EDITORIAL IPREFACE TO SPECIAL ISSUE ON ADVANCED MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE. <i>Journal of Molecular and Engineering Materials</i> , 2013 , 01, 1302002	1.3	
127	Self-Supported Construction of Uniform Fe3O4 Hollow Microspheres from Nanoplate Building Blocks. <i>Angewandte Chemie</i> , 2013 , 125, 4259-4262	3.6	30
126	Rtktitelbild: General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium-Ion Batteries (Angew. Chem. 33/2013). <i>Angewandte Chemie</i> , 2013 , 125, 8916-8916	3.6	1
125	General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors (Adv. Mater. 7/2013). <i>Advanced Materials</i> , 2013 , 25, 975-975	24	9
124	Capacitors: Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with Co3O4 Hollow Nanoparticles as Self-Supported Electrodes for Electrochemical Capacitors (Adv. Funct. Mater. 31/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3944-3944	15.6	2
123	Ordered Macroporous BiVO4 Architectures with Controllable Dual Porosity for Efficient Solar Water Splitting. <i>Angewandte Chemie</i> , 2013 , 125, 8741-8745	3.6	19

(2012-2013)

122	Highly Concave Platinum Nanoframes with High-Index Facets and Enhanced Electrocatalytic Properties. <i>Angewandte Chemie</i> , 2013 , 125, 12563-12566	3.6	35
121	Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. <i>Electrochemistry Communications</i> , 2012 , 20, 7-10	5.1	134
120	Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO2 for lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2012 , 18, 2094-9	4.8	66
119	Titania nanosheets hierarchically assembled on carbon nanotubes as high-rate anodes for lithium-ion batteries. <i>Chemistry - A European Journal</i> , 2012 , 18, 3132-5	4.8	42
118	Silver Nanoparticles Deposited Layered Double Hydroxide Nanoporous Coatings with Excellent Antimicrobial Activities. <i>Advanced Functional Materials</i> , 2012 , 22, 780-787	15.6	126
117	Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. <i>Advanced Materials</i> , 2012 , 24, 745-8	24	618
116	TiO(2) nanocages: fast synthesis, interior functionalization and improved lithium storage properties. <i>Advanced Materials</i> , 2012 , 24, 4124-9	24	237
115	Template-free formation of uniform urchin-like FeOOH hollow spheres with superior capability for water treatment. <i>Advanced Materials</i> , 2012 , 24, 1111-6	24	463
114	Metal oxide hollow nanostructures for lithium-ion batteries. <i>Advanced Materials</i> , 2012 , 24, 1903-11	24	1327
113	Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17388-91	16.4	841
112	Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. <i>ACS Applied Materials & District Communication and Com</i>	9.5	139
111	A magnetically separable photocatalyst based on nest-like FeD/ZnO double-shelled hollow structures with enhanced photocatalytic activity. <i>Nanoscale</i> , 2012 , 4, 183-7	7.7	231
110	One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13934-7	16.4	531
109	Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. <i>Nanoscale</i> , 2012 , 4, 2526-42	7.7	915
108	Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)[D.11H2O and Their Lithium-Storage Properties. <i>Advanced Functional Materials</i> , 2012 , 22, 861-871	15.6	506
107	Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. <i>Advanced Functional Materials</i> , 2012 , 22, 4592-4597	15.6	1385
106	Formation of 1D Hierarchical Structures Composed of Ni3S2 Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H2 Production. <i>Advanced Energy Materials</i> , 2012 , 2, 1497-1502	21.8	295
105	Microwave-Assisted Synthesis of Porous Ag2SAg Hybrid Nanotubes with High Visible-Light Photocatalytic Activity. <i>Angewandte Chemie</i> , 2012 , 124, 11669-11672	3.6	38

InnenrEktitelbild: Microwave-Assisted Synthesis of Porous Ag2SAg Hybrid Nanotubes with High 104 Visible-Light Photocatalytic Activity (Angew. Chem. 46/2012). Angewandte Chemie, 2012, 124, 11807-11807 Microwave-assisted synthesis of porous Aq2S-Aq hybrid nanotubes with high visible-light 103 16.4 206 photocatalytic activity. Angewandte Chemie - International Edition, 2012, 51, 11501-4 Porous Co3O4 nanowires derived from long Co(CO3)(0.5)(OH)(0.11H2O nanowires with improved 102 218 7.7 supercapacitive properties. Nanoscale, 2012, 4, 2145-9 Formation of Pt-TiO2-rGO 3-phase junctions with significantly enhanced electro-activity for 101 3.6 59 methanol oxidation. Physical Chemistry Chemical Physics, 2012, 14, 473-6 Assembling carbon-coated Fe2O3 hollow nanohorns on the CNT backbone for superior lithium 100 708 35.4 storage capability. Energy and Environmental Science, 2012, 5, 5252-5256 Recent advances in metal oxide-based electrode architecture design for electrochemical energy 99 24 2029 storage. Advanced Materials, 2012, 24, 5166-80 Hollow Microspheres: Formation of ZnMn2O4 Ball-in-Ball Hollow Microspheres as a 98 High-Performance Anode for Lithium-Ion Batteries (Adv. Mater. 34/2012). Advanced Materials, 2012 24 4 , 24, 4590-4590 Confining Sulfur in Double-Shelled Hollow Carbon Spheres for LithiumBulfur Batteries. 3.6 261 97 Angewandte Chemie, **2012**, 124, 9730-9733 Innentitelbild: Confining Sulfur in Double-Shelled Hollow Carbon Spheres for LithiumBulfur 96 3.6 2 Batteries (Angew. Chem. 38/2012). Angewandte Chemie, 2012, 124, 9594-9594 Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angewandte 16.4 625 95 Chemie - International Edition, 2012, 51, 9592-5 One-pot synthesis of ultra-light nickel nanofoams composed of nanowires and their transformation 94 11 41 into various functional nanofoams. Small, 2012, 8, 3432-7 Facile synthesis of hierarchical MoSImicrospheres composed of few-layered nanosheets and their 93 7.7 394 lithium storage properties. Nanoscale, 2012, 4, 95-8 DNA-directed growth of FePO4 nanostructures on carbon nanotubes to achieve nearly 100% 92 65 35.4 theoretical capacity for lithium-ion batteries. Energy and Environmental Science, 2012, 5, 6919 Ultralong EMoO3 Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage 3.8 221 91 Properties. Journal of Physical Chemistry C, 2012, 116, 12508-12513 SnO2 and TiO2 nanosheets for lithium-ion batteries. Materials Today, 2012, 15, 246-254 21.8 90 140 Fe2O3-mediated growth and carbon nanocoating of ultrafine SnO2 nanorods as anode materials 89 46 for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 2526-2531 Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium 88 48 3.3 storage properties. CrystEngComm, 2012, 14, 5133 The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. 87 43 Journal of Materials Chemistry, **2012**, 22, 9466

(2012-2012)

86	Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 827-829		226
85	Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. <i>Chemical Communications</i> , 2012 , 48, 6912-4	5.8	208
84	Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. <i>Energy and Environmental Science</i> , 2012 , 5, 7883	35.4	725
83	Green Synthesis of NiO Nanobelts with Exceptional Pseudo-Capacitive Properties. <i>Advanced Energy Materials</i> , 2012 , 2, 1188-1192	21.8	274
82	Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. <i>Energy and Environmental Science</i> , 2012 , 5, 9453	35.4	709
81	Synthesis of micro-sized SnO2@carbon hollow spheres with enhanced lithium storage properties. <i>Nanoscale</i> , 2012 , 4, 3651-4	7.7	60
80	Flexible Hybrid Paper Made of Monolayer Co3O4 Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. <i>Advanced Functional Materials</i> , 2012 , 22, 2560-2566	15.6	336
79	Direct synthesis of anatase TiOIhanowires with enhanced photocatalytic activity. <i>Advanced Materials</i> , 2012 , 24, 2567-71	24	256
78	Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. <i>Advanced Materials</i> , 2012 , 24, 4609-13	24	557
77	Self-Supported Interconnected Pt Nanoassemblies as Highly Stable Electrocatalysts for Low-Temperature Fuel Cells. <i>Angewandte Chemie</i> , 2012 , 124, 7325-7328	3.6	74
76	Unusual Formation of Single-Crystal Manganese Sulfide Microboxes Co-mediated by the Cubic Crystal Structure and Shape. <i>Angewandte Chemie</i> , 2012 , 124, 7379-7382	3.6	24
75	Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7213-6	16.4	202
74	Unusual formation of single-crystal manganese sulfide microboxes co-mediated by the cubic crystal structure and shape. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7267-70	16.4	87
73	One-step synthesis of SnO2 and TiO2 hollow nanostructures with various shapes and their enhanced lithium storage properties. <i>Chemistry - A European Journal</i> , 2012 , 18, 7561-7	4.8	66
72	Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7851		235
71	Sandwich-structured TiO2Ptgraphene ternary hybrid electrocatalysts with high efficiency and stability. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16499		107
70	Synthesis of MoS(2)-C one-dimensional nanostructures with improved lithium storage properties. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	171
69	Hydrothermal synthesis and electrochemical properties of EMoO3 nanobelts used as cathode materials for Li-ion batteries. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 107, 249-254	2.6	35

68	Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 21-3	16.4	364
67	Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. <i>Energy and Environmental Science</i> , 2011 , 4, 717-724	35.4	789
66	Fe2O3 nanotubes with superior lithium storage capability. <i>Chemical Communications</i> , 2011 , 47, 8061-3	5.8	246
65	CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. <i>Nanoscale</i> , 2011 , 3, 1618-23	7.7	157
64	SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9912		308
63	Unusual rutileTiO2 nanosheets with exposed (001) facets. <i>Chemical Science</i> , 2011 , 2, 2219	9.4	50
62	SnOIhanosheet hollow spheres with improved lithium storage capabilities. <i>Nanoscale</i> , 2011 , 3, 3586-8	7.7	163
61	Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. <i>RSC Advances</i> , 2011 , 1, 397	3.7	298
60	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. <i>Nanoscale</i> , 2011 , 3, 1084-9	7.7	330
59	One-pot synthesis of uniform FeDIhanospheres with carbon matrix support for improved lithium storage capabilities. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 3276-9	9.5	148
58	Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6602		255
57	Synthesis of octahedral Mn3O4 crystals and their derived Mn3O4MnO2 heterostructures via oriented growth. <i>CrystEngComm</i> , 2011 , 13, 5685	3.3	48
56	Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18359		134
55	Quasiemulsion-templated formation of Fe2O3 hollow spheres with enhanced lithium storage properties. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17146-8	16.4	699
54	Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24605-24610	3.8	181
53	SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. <i>Chemical Communications</i> , 2011 , 47, 7155-7	5.8	367
52	TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 2011 , 21, 1677-1680		167
51	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. <i>Chemical Communications</i> , 2011 , 47, 12578-91	5.8	727

(2011-2011)

50	Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe3O4@Carbon Nanorods for Application in Lithium Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9814-9820	3.8	276
49	Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. <i>ACS Nano</i> , 2011 , 5, 7617-26	16.7	190
48	Graphene-supported anatase TiO2 nanosheets for fast lithium storage. <i>Chemical Communications</i> , 2011 , 47, 5780-2	5.8	289
47	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. <i>Chemical Communications</i> , 2011 , 47, 2631-3	5.8	189
46	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. <i>Chemical Communications</i> , 2011 , 47, 10443-5	5.8	68
45	Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4738-41	16.4	498
44	CNTs@SnO2@carbon coaxial nanocables with high mass fraction of SnO2 for improved lithium storage. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2278-81	4.5	57
43	Mesoporous carbon-coated Li4Ti5O12 spheres for fast Li+ ion insertion/deinsertion in lithium battery anodes. <i>Applied Nanoscience (Switzerland)</i> , 2011 , 1, 7-11	3.3	10
42	One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties. <i>Advanced Functional Materials</i> , 2011 , 21, 41	2 0 -492	5 ²⁵⁰
41	Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage. <i>Advanced Materials</i> , 2011 , 23, 998-1002	24	198
40	A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries. <i>Advanced Energy Materials</i> , 2011 , 1, 736-741	21.8	255
39	Building Hematite Nanostructures by Oriented Attachment. <i>Angewandte Chemie</i> , 2011 , 123, 676-679	3.6	8
38	Building hematite nanostructures by oriented attachment. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 650-3	16.4	83
37	Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. <i>Chemistry - A European Journal</i> , 2011 , 17, 13142-5	4.8	311
36	Asymmetric anatase TiOIhanocrystals with exposed high-index facets and their excellent lithium storage properties. <i>Nanoscale</i> , 2011 , 3, 4082-4	7.7	55
35	Silica-based complex nanorattles as multifunctional carrier for anticancer drug. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8052		40
34	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. <i>Nanoscale</i> , 2011 , 3, 2158-61	7.7	218
33	SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13860		61

32	Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity. <i>Chemical Communications</i> , 2011 , 47, 9609-11	5.8	50
31	Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. <i>ACS Applied Materials & District Research</i> 1, 3, 4853-7	9.5	152
30	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5687		158
29	Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. <i>ACS Applied Materials & Distributed Materi</i>	9.5	166
28	Fast Synthesis of EMoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8675-8678	3.8	190
27	Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16271-7	16.4	223
26	TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. <i>Chemical Communications</i> , 2010 , 46, 8252-4	5.8	176
25	Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. Journal of Materials Chemistry, 2010 , 20, 7015		313
24	One-pot synthesis of uniform carbon-coated MoO(2) nanospheres for high-rate reversible lithium storage. <i>Chemical Communications</i> , 2010 , 46, 6906-8	5.8	172
23	Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. <i>Chemical Communications</i> , 2010 , 46, 6129-31	5.8	197
22	Top-down fabrication of Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13162-4	16.4	333
21	Porous Spheres Assembled from Polythiophene (PTh)-Coated Ultrathin MnO2 Nanosheets with Enhanced Lithium Storage Capabilities. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12048-12051	3.8	81
20	Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6124-30	16.4	1149
19	Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1694-1700	3.8	403
18	Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods Chemistry of Materials, 2010 , 22, 746-754	9.6	199
17	The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. <i>Journal of Power Sources</i> , 2010 , 195, 2905-2908	8.9	104
16	Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage. <i>Advanced Materials</i> , 2009 , 21, 2536-2539	24	965
15	Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. <i>Electrochemistry Communications</i> , 2009 , 11, 2332-2335	5.1	207

LIST OF PUBLICATIONS

14	SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20504-20508	3.8	215
13	One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties. <i>Chemistry of Materials</i> , 2009 , 21, 2868-2874	9.6	406
12	One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. <i>Nanoscale</i> , 2009 , 1, 280-5	7.7	189
11	Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. <i>Chemistry of Materials</i> , 2008 , 20, 6562-6566	9.6	393
10	Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4397		297
9	A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles. <i>Advanced Materials</i> , 2008 , 20, 1853-1858	24	300
8	Hollow Micro-/Nanostructures: Synthesis and Applications. <i>Advanced Materials</i> , 2008 , 20, 3987-4019	24	2631
7	Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. <i>Small</i> , 2007 , 3, 261-5	11	269
6	Platinum-functionalized octahedral silica nanocages: synthesis and characterization. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3825-9	16.4	90
5	An Unusual Example of Hyperbranched Metal Nanocrystals and Their Shape Evolution. <i>Chemistry of Materials</i> , 2006 , 18, 3921-3923	9.6	81
4	Complex alpha-MoO(3) nanostructures with external bonding capacity for self-assembly. <i>Journal of the American Chemical Society</i> , 2003 , 125, 2697-704	16.4	189
3	An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. <i>Inorganic Chemistry</i> , 2003 , 42, 6169-71	5.1	102
2	Hydrothermal Synthesis of EMoO3 Nanorods via Acidification of Ammonium Heptamolybdate Tetrahydrate. <i>Chemistry of Materials</i> , 2002 , 14, 4781-4789	9.6	311
1	Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis. <i>Advanced Energy Materials</i> ,2103383	21.8	17