Eduardo Busto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11011424/publications.pdf Version: 2024-02-01

Ευπνου Βιίετο

#	Article	IF	CITATIONS
1	Candida antarctica Lipase B: An Ideal Biocatalyst for the Preparation of Nitrogenated Organic Compounds. Advanced Synthesis and Catalysis, 2006, 348, 797-812.	4.3	341
2	Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chemical Society Reviews, 2010, 39, 4504.	38.1	267
3	Recent Developments of Cascade Reactions Involving ï‰-Transaminases. ACS Catalysis, 2014, 4, 129-143.	11.2	250
4	Hydrolases in the Stereoselective Synthesis of <i>N</i> -Heterocyclic Amines and Amino Acid Derivatives. Chemical Reviews, 2011, 111, 3998-4035.	47.7	126
5	Transaminases Applied to the Synthesis of High Added-Value Enantiopure Amines. Organic Process Research and Development, 2014, 18, 788-792.	2.7	78
6	Domino Meyer–Schuster/Arylation Reaction of Alkynols or Alkynyl Hydroperoxides with Diazonium Salts Promoted by Visible Light under Dual Gold and Ruthenium Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 1526-1533.	4.3	71
7	Asymmetric Chemoenzymatic Synthesis of Miconazole and Econazole Enantiomers. The Importance of Chirality in Their Biological Evaluation. Journal of Organic Chemistry, 2011, 76, 2115-2122.	3.2	65
8	Chemoenzymatic Synthesis of Rivastigmine Based on Lipase-Catalyzed Processes. Journal of Organic Chemistry, 2009, 74, 5304-5310.	3.2	56
9	Photopromoted Entry to Benzothiophenes, Benzoselenophenes, 3 <i>H</i> â€Indoles, Isocoumarins, Benzosultams, and (Thio)flavones by Goldâ€Catalyzed Arylative Heterocyclization of Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2640-2652.	4.3	56
10	Biocatalytic One-Pot Synthesis of l-Tyrosine Derivatives from Monosubstituted Benzenes, Pyruvate, and Ammonia. ACS Catalysis, 2015, 5, 7503-7506.	11.2	54
11	Protein-Mediated Nitroaldol Addition in Aqueous Media. Catalytic Promiscuity or Unspecific Catalysis?. Organic Process Research and Development, 2011, 15, 236-240.	2.7	52
12	Enantioselective Synthesis of 4-(Dimethylamino)pyridines through a Chemical Oxidation-Enzymatic Reduction Sequence. Application in Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 2626-2632.	4.3	51
13	Use of Protease from <i>Bacillus licheniformis</i> as Promiscuous Catalyst for Organic Synthesis: Applications in Cï٤¿C and Cï٤¿N Bond Formation Reactions. Advanced Synthesis and Catalysis, 2011, 353, 2345-2353.	4.3	50
14	From Salts to Ionic Liquids by Systematic Structural Modifications: A Rational Approach Towards the Efficient Modular Synthesis of Enantiopure Imidazolium Salts. Chemistry - A European Journal, 2010, 16, 836-847.	3.3	49
15	Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: Chemical synthesis and full characterization. Analytica Chimica Acta, 2012, 721, 173-181.	5.4	46
16	Straightforward Synthesis of Enantiopure 2,3-Dihydrobenzofurans by a Sequential Stereoselective Biotransformation and Chemical Intramolecular Cyclization. Organic Letters, 2010, 12, 3498-3501.	4.6	44
17	Asymmetric Chemoenzymatic Synthesis of Ramatroban Using Lipases and Oxidoreductases. Journal of Organic Chemistry, 2012, 77, 4842-4848.	3.2	44
18	Biocontrolled Formal Inversion or Retention of <scp>L</scp> â€i±â€Amino Acids to Enantiopure (<i>R</i>)―or (<i>S</i>)â€Hydroxyacids. Chemistry - A European Journal, 2014, 20, 11225-11228.	3.3	42

Eduardo Busto

#	Article	IF	CITATIONS
19	Cutting Short the Asymmetric Synthesis of the Ramatroban Precursor by Employing ï‰â€Transaminases. Advanced Synthesis and Catalysis, 2014, 356, 1937-1942.	4.3	40
20	Vinylation of Unprotected Phenols Using a Biocatalytic System. Angewandte Chemie - International Edition, 2015, 54, 10899-10902.	13.8	40
21	Photoinduced Gold-Catalyzed Domino C(sp) Arylation/Oxyarylation of TMS-Terminated Alkynols with Arenediazonium Salts. Journal of Organic Chemistry, 2017, 82, 2177-2186.	3.2	39
22	Highly Stereoselective Chemoenzymatic Synthesis of the 3H-Isobenzofuran Skeleton. Access to Enantiopure 3-Methylphthalides. Organic Letters, 2012, 14, 1444-1447.	4.6	38
23	One-Pot Synthesis of Enantiopure 3,4-Dihydroisocoumarins through Dynamic Reductive Kinetic Resolution Processes. Organic Letters, 2013, 15, 3872-3875.	4.6	38
24	Stereoselective Synthesis of 2,3-Disubstituted Indoline Diastereoisomers by Chemoenzymatic Processes. Journal of Organic Chemistry, 2012, 77, 8049-8055.	3.2	35
25	Enzymatic Desymmetrization of Prochiral 2-Substituted-1,3-Diamines: Preparation of Valuable Nitrogenated Compounds. Journal of Organic Chemistry, 2009, 74, 2571-2574.	3.2	34
26	A synthetic biology approach for the transformation of <scp>l</scp> -α-amino acids to the corresponding enantiopure (R)- or (S)-α-hydroxy acids. Chemical Communications, 2015, 51, 2828-2831.	4.1	33
27	Versatile Synthesis of Polyfunctionalized Carbazoles from (3-Iodoindol-2-yl)butynols via a Gold-Catalyzed Intramolecular Iodine-Transfer Reaction. ACS Catalysis, 2015, 5, 3417-3421.	11.2	32
28	Sequential Biocatalytic Aldol Reactions in Multistep Asymmetric Synthesis: Pipecolic Acid, Piperidine and Pyrrolidine (Homo)Iminocyclitol Derivatives from Achiral Building Blocks. Advanced Synthesis and Catalysis, 2014, 356, 3007-3024.	4.3	31
29	Biocatalytic trifluoromethylation of unprotected phenols. Nature Communications, 2016, 7, 13323.	12.8	28
30	Enzymatic Preparation of Novel Aminoalkylpyridines using Lipases in Organic Solvents. Advanced Synthesis and Catalysis, 2007, 349, 1481-1488.	4.3	27
31	Simple and straightforward synthesis of novel enantiopure ionic liquids via efficient enzymatic resolution of (±)-2-(1H-imidazol-1-yl)cyclohexanol. Tetrahedron Letters, 2007, 48, 5251-5254.	1.4	27
32	One-Pot, Two-Module Three-Step Cascade To Transform Phenol Derivatives to Enantiomerically Pure (R)- or (S)-p-Hydroxyphenyl Lactic Acids. ACS Catalysis, 2016, 6, 2393-2397.	11.2	26
33	First Desymmetrization of 1,3-Propanediamine Derivatives in Organic Solvent. Development of a New Route for the Preparation of Optically Active Amines. Organic Letters, 2007, 9, 4203-4206.	4.6	25
34	Evaluation of new ionic liquids as high stability selective stationary phases in gas chromatography. Analytical and Bioanalytical Chemistry, 2011, 400, 1209-1216.	3.7	25
35	Biocatalytic preparation of optically active 4-(N,N-dimethylamino)pyridines for application in chemical asymmetric catalysis. Tetrahedron: Asymmetry, 2006, 17, 1007-1016.	1.8	22
36	Enantiopure Triazolium Salts: Chemoenzymatic Synthesis and Applications in Organocatalysis. ChemCatChem, 2011, 3, 1921-1928.	3.7	20

Eduardo Busto

#	Article	IF	CITATIONS
37	Characterization of hexacationic imidazolium ionic liquids as effective and highly stable gas chromatography stationary phases. Journal of Separation Science, 2012, 35, 273-279.	2.5	20
38	Biocatalytic Transamination for the Asymmetric Synthesis of Pyridylalkylamines. Structural and Activity Features in the Reactivity of Transaminases. ACS Catalysis, 2016, 6, 4003-4009.	11.2	20
39	Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or Transamination: Computational Insights into the Reactivity of Transaminases. Advanced Synthesis and Catalysis, 2017, 359, 279-291.	4.3	20
40	Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: Synthesis and characterization of polymeric imidazolium ionic liquids. Journal of Chromatography A, 2013, 1305, 35-40.	3.7	19
41	Recent Developments in the Preparation of Carbohydrate Derivatives from Achiral Building Blocks by using Aldolases. ChemCatChem, 2016, 8, 2589-2598.	3.7	19
42	Synthesis of Optically Active Heterocyclic Compounds by Preparation of 1,3â€Dinitro Derivatives and Enzymatic Enantioselective Desymmetrization of Prochiral Diamines. European Journal of Organic Chemistry, 2010, 2010, 484-493.	2.4	18
43	Chemoenzymatic Synthesis of Enantiomerically Pure <i>syn</i> â€Configured 1â€Arylâ€3â€methylisochroman Derivatives. European Journal of Organic Chemistry, 2014, 2014, 111-121.	2.4	18
44	Chemoenzymatic Asymmetric Synthesis of 1,4-Benzoxazine Derivatives: Application in the Synthesis of a Levofloxacin Precursor. Journal of Organic Chemistry, 2015, 80, 3815-3824.	3.2	18
45	Chemoenzymatic synthesis of chiral 4-(N,N-dimethylamino)pyridine derivatives. Tetrahedron: Asymmetry, 2005, 16, 3427-3435.	1.8	17
46	Chemoenzymatic Asymmetric Synthesis of Optically Active Pentane-1,5-diamine Fragments by Means of Lipase-Catalyzed Desymmetrization Transformations. Journal of Organic Chemistry, 2011, 76, 5709-5718.	3.2	16
47	Development of a chemoenzymatic strategy for the synthesis of optically active and orthogonally protected polyamines. Tetrahedron, 2009, 65, 8393-8401.	1.9	15
48	Enantiopure 3-methyl-3,4-dihydroisocoumarins and 3-methyl-1,2,3,4-tetrahydroisoquinolines via chemoenzymatic asymmetric transformations. Catalysis Science and Technology, 2012, 2, 1590.	4.1	12
49	Chemoenzymatic synthesis of optically active 2-(2′- or 4′-substituted-1H-imidazol-1-yl)cycloalkanols: chiral additives for (I)-proline. Catalysis Science and Technology, 2013, 3, 2596.	4.1	12
50	Dynamic Reductive Kinetic Resolution of Benzyl Ketones using Alcohol Dehydrogenases and Anion Exchange Resins. Advanced Synthesis and Catalysis, 2016, 358, 122-131.	4.3	12
51	Chiral Triazolium Salts and Ionic Liquids: From the Molecular Design Vectors to Their Physical Properties through Specific Supramolecular Interactions. Chemistry - A European Journal, 2013, 19, 892-904.	3.3	11
52	A Facile Synthesis of Blue Luminescent [7]Helicenocarbazoles Based on Goldâ€Catalyzed Rearrangementâ€lodonium Migration and Suzuki–Miyaura Benzannulation Reactions. Chemistry - A European Journal, 2018, 24, 7620-7625.	3.3	11
53	Chemoenzymatic Asymmetric Synthesis of Serotonin Receptor Agonist (<i>R</i>)â€Frovatriptan. European Journal of Organic Chemistry, 2013, 2013, 4057-4064.	2.4	9
54	Systems biocatalysis: para-alkenylation of unprotected phenols. Catalysis Science and Technology, 2016, 6, 8098-8103.	4.1	7

#	Article	IF	CITATIONS
55	Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase. Nature Protocols, 2006, 1, 2061-2067.	12.0	6
56	Computational Study of the Lipaseâ€Mediated Desymmetrisation of 2â€Substitutedâ€Propaneâ€1,3â€Diamines. ChemBioChem, 2009, 10, 2875-2883.	2.6	5