Rp George

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11010763/publications.pdf

Version: 2024-02-01

304743 395702 1,200 43 22 33 citations h-index g-index papers 43 43 43 1161 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A new ternary composite steel rebar coating for enhanced corrosion resistance in chloride environment. Construction and Building Materials, 2022, 320, 126307.	7.2	21
2	Enhanced corrosion protection of reinforcement steel with nanomaterial incorporated fly ash based cementitious coating. Construction and Building Materials, 2021, 275, 122130.	7.2	22
3	The chloride-induced corrosion of a fly ash concrete with nanoparticles and corrosion inhibitor. Construction and Building Materials, 2021, 274, 122097.	7.2	27
4	Role of Oxygen Vacancy Formation Energy and Insulating Behavior in Darkening of White Amorphous TiO ₂ . Journal of Physical Chemistry C, 2021, 125, 16136-16146.	3.1	9
5	Fabrication of a robust graphene oxide-nano SiO2-polydimethylsiloxane composite coating on carbon steel for marine applications. Progress in Organic Coatings, 2021, 161, 106462.	3.9	27
6	Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications. Progress in Organic Coatings, 2020, 139, 105444.	3.9	62
7	Fabrication of silanized GO hybrid coating on 316L SS with enhanced corrosion resistance and antibacterial properties for marine applications. Surface and Coatings Technology, 2020, 402, 126295.	4.8	25
8	Enhanced biodeterioration and biofouling resistance of nanoparticles and inhibitor admixed fly ash based concrete in marine environments. International Biodeterioration and Biodegradation, 2020, 155, 105088.	3.9	12
9	Fabrication of superhydrophobic titanium surfaces with superior antibacterial properties using graphene oxide and silanized silica nanoparticles. Surface and Coatings Technology, 2020, 400, 126074.	4.8	44
10	Anomalous enhancement of corrosion resistance and antibacterial property of commercially pure Titanium (CP-Ti) with nanoscale rutile titania film. Corrosion Science, 2020, 172, 108678.	6.6	24
11	Efficacy of imidazolium and piperidinium based ionic liquids on inhibiting biofilm formation on titanium and carbon steel surfaces. Analytica Chimica Acta, 2020, 1126, 38-51.	5.4	16
12	A simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties. Applied Surface Science, 2020, 512, 145636.	6.1	88
13	Robust nickel-reduced graphene oxide-myristic acid superhydrophobic coating on carbon steel using electrochemical codeposition and its corrosion resistance. Surface and Coatings Technology, 2020, 397, 125942.	4.8	64
14	In situ application of alternate potentials with chlorination synergistically enhanced biofouling control of titanium condenser materials. International Biodeterioration and Biodegradation, 2019, 144, 104746.	3.9	10
15	Fungal resistance of nanomodifiers and corrosion inhibitor amended fly ash concrete. International Biodeterioration and Biodegradation, 2019, 143, 104725.	3.9	8
16	Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete. Construction and Building Materials, 2019, 221, 232-243.	7.2	44
17	Determination of nanoscale titanium oxide thin film phase composition using X-ray photoelectron spectroscopy valence band analysis. Thin Solid Films, 2019, 681, 58-68.	1.8	14
18	Enhanced antiâ€microbial activity in green concrete specimens containing fly ash, nanophase modifiers, and corrosion inhibitor. Environmental Progress and Sustainable Energy, 2019, 38, 13102.	2.3	7

#	Article	IF	CITATIONS
19	Enhanced biodeterioration resistance of nanophase modified fly ash concrete specimens: Accelerated studies in acid producing microbial cultures. Environmental Progress and Sustainable Energy, 2019, 38, 457-466.	2.3	3
20	High performance green concrete (HPGC) with improved strength and chloride ion penetration resistance by synergistic action of fly ash, nanoparticles and corrosion inhibitor. Construction and Building Materials, 2019, 198, 299-312.	7. 2	55
21	Development of hydrophobic cupronickel surface with biofouling resistance by sandblasting. Surface and Coatings Technology, 2018, 345, 89-95.	4.8	8
22	Phase identification in binary mixture of nanopowders from deconvoluted valence band spectra using X-ray photoelectron spectroscopy: Case study with iron oxide and titania polymorphs. Applied Surface Science, 2018, 462, 932-943.	6.1	13
23	Enhancement of strength and durability of fly ash concrete in seawater environments: Synergistic effect of nanoparticles. Construction and Building Materials, 2018, 187, 448-459.	7.2	62
24	Characterizing biofilms for biofouling and microbial corrosion control in cooling water systems. Anti-Corrosion Methods and Materials, 2016, 63, 477-489.	1.5	7
25	Enhancing antimicrobial properties of fly ash mortars specimens through nanophase modification. Materials Today: Proceedings, 2016, 3, 1389-1397.	1.8	11
26	A silver nanoparticle loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry, 2015, 106, 290-297.	4.6	14
27	Studies on the influence of surface morphology of ZnO nail beds on easy roll off of water droplets. Applied Surface Science, 2015, 347, 839-848.	6.1	22
28	Detection and analysis of microbiologically influenced corrosion of 316 L stainless steel with electrochemical noise technique. Engineering Failure Analysis, 2014, 42, 133-142.	4.0	29
29	Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium. Ultrasonics Sonochemistry, 2014, 21, 189-199.	8.2	33
30	Influence of silanes on the wettability of anodized titanium. Applied Surface Science, 2014, 292, 650-657.	6.1	34
31	Studies of detailed Biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments. Environmental Technology (United Kingdom), 2014, 35, 42-51.	2.2	30
32	Hollow mesoporous zirconia nanocontainers for storing and controlled releasing of corrosion inhibitors. Ceramics International, 2014, 40, 10457-10463.	4.8	61
33	Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp Cement and Concrete Research, 2013, 47, 8-13.	11.0	36
34	Enhancement of Corrosion Performance of Titanium by Micro-Nano Texturing. Corrosion, 2013, 69, 804-812.	1.1	26
35	Antibacterial studies on Eu–Ag codoped TiO2 surfaces. Ceramics International, 2013, 39, 1695-1705.	4.8	32
36	Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method. Materials Research Bulletin, 2013, 48, 635-639.	5.2	28

RP GEORGE

#	Article	IF	CITATIONS
37	Microbially induced corrosion of D9 stainless steel–zirconium metal waste form alloy under simulated geological repository environment. Corrosion Science, 2012, 61, 19-27.	6.6	15
38	Microbiologically Influenced Corrosion in UNS S31653: Detection and Analysis Using Electrochemical Noise Technique. Corrosion, 2011, 67, 115004-115004-11.	1.1	12
39	Detection of algae and bacterial biofilms formed on titanium surfaces using micro-Raman analysis. Applied Surface Science, 2010, 256, 5108-5115.	6.1	37
40	TECHNIQUES FOR BIOFILM MONITORING. Corrosion Reviews, 2006, 24, .	2.0	8
41	Photocatalytic Inhibition of Microbial Adhesion by Anodized Titanium. Biofouling, 2004, 20, 167-175.	2.2	56
42	Mechanism of a MIC probe. Corrosion Science, 2003, 45, 1999-2015.	6.6	21
43	Microbiologically influenced corrosion of AISI type 304 stainless steels under fresh water biofilms. Materials and Corrosion - Werkstoffe Und Korrosion, 2000, 51, 213-218.	1.5	23