
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11008330/publications.pdf Version: 2024-02-01

Ιμτζ Νλεσλιλ

#	Article	IF	CITATIONS
1	Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 2008, 249, 1-35.	3.3	3,858
2	Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 2004, 28, 9-39.	1.9	1,142
3	Zircon M257 ―a Homogeneous Natural Reference Material for the Ion Microprobe Uâ€Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 2008, 32, 247-265.	3.1	591
4	Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contributions To Mineralogy and Petrology, 2001, 141, 125-144.	3.1	350
5	The degree of metamictization in zircon: a Raman spectroscopic study. European Journal of Mineralogy, 1995, 7, 471-478.	1.3	237
6	Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters, 2007, 260, 1-9.	4.4	232
7	Incomplete retention of radiation damage in zircon from Sri Lanka. American Mineralogist, 2004, 89, 219-231.	1.9	193
8	Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology, 2002, 191, 121-140.	3.3	169
9	Occurrence and distribution of "moganite―in agate/chalcedony: a combined micro-Raman, Rietveld, and cathodoluminescence study. Contributions To Mineralogy and Petrology, 1998, 133, 96-105.	3.1	133
10	Radiation damage in zircon. American Mineralogist, 2003, 88, 770-781.	1.9	133
11	Microdiamonds from the Saxonian Erzgebirge, Germany: in situ micro-Raman characterisation. European Journal of Mineralogy, 2000, 12, 495-498.	1.3	133
12	Long-term stability of alpha particle damage in natural zircon. Chemical Geology, 2005, 220, 83-103.	3.3	93
13	Detection of a Ca-rich lithology in the Earth's deep (>300 km) convecting mantle. Earth and Planetary Science Letters, 2005, 236, 579-587.	4.4	90
14	Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario. Chemical Geology, 2010, 269, 290-300.	3.3	88
15	Heterogeneous metamictization of zircon on a microscale. Geochimica Et Cosmochimica Acta, 1996, 60, 1091-1097.	3.9	82
16	On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. Journal of the Geological Society, 2009, 166, 811-823.	2.1	78
17	The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochimica Et Cosmochimica Acta, 2009, 73, 1637-1650.	3.9	78
18	A Raman spectroscopic study on the structural disorder of monazite–(Ce). Mineralogy and Petrology, 2012, 105, 41-55.	1.1	71

#	Article	IF	CITATIONS
19	Annealing kinetics of radiation damage in zircon. Geochimica Et Cosmochimica Acta, 2019, 249, 225-246.	3.9	67
20	Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps. American Mineralogist, 2005, 90, 745-748.	1.9	66
21	Laser-induced REE3+ photoluminescence of selected accessory minerals — An "advantageous artefact― in Raman spectroscopy. Chemical Geology, 2015, 415, 1-16.	3.3	64
22	Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzofeldspathic rock from the Erzgebirge, Germany. American Mineralogist, 2003, 88, 883-889.	1.9	63
23	Shock-induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany). Contributions To Mineralogy and Petrology, 2008, 155, 457-472.	3.1	62
24	Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds. European Journal of Mineralogy, 2004, 15, 931-935.	1.3	57
25	Origin of SiO2-rich components in ordinary chondrites. Geochimica Et Cosmochimica Acta, 2006, 70, 1548-1564.	3.9	57
26	Low-temperature Zr mobility: An in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O + HCl SiO2 fluids. American Mineralogist, 2006, 91, 1211-1215.	1.9	56
27	Evidence for fractional condensation and reprocessing at high temperatures in CH chondrites. Meteoritics and Planetary Science, 2003, 38, 1199-1215.	1.6	54
28	Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to P-T conditions. American Mineralogist, 2010, 95, 1-10.	1.9	49
29	Zircon M127 – A Homogeneous Reference Material for <scp>SIMS</scp> U–Pb Geochronology Combined with Hafnium, Oxygen and, Potentially, Lithium Isotope Analysis. Geostandards and Geoanalytical Research, 2016, 40, 457-475.	3.1	49
30	Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contributions To Mineralogy and Petrology, 1998, 132, 300-306.	3.1	48
31	Factors affecting the Nd3+ (REE3+) luminescence of minerals. Mineralogy and Petrology, 2013, 107, 415-428.	1.1	44
32	Age of the Siberian craton crust beneath the northern kimberlite fields: Insights to the craton evolution. Gondwana Research, 2016, 39, 365-385.	6.0	38
33	Internal structures and dating of complex zircons from Meissen Massif monzonites, Saxony. Chemical Geology, 1999, 156, 331-341.	3.3	36
34	Relevance of Cathodoluminescence for the Interpretation of U-Pb Zircon Ages, with an Example of an Application to a Study of Zircons from the Saxonian Granulite Complex, Germany. , 2000, , 415-455.		35
35	Effects of natural radiation damage on back-scattered electron images of single crystals of minerals. American Mineralogist, 2006, 91, 1739-1746.	1.9	35
36	lsotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry. Chemical Geology, 2018, 481, 146-154.	3.3	34

#	Article	IF	CITATIONS
37	<scp>GZ</scp> 7 and <scp>GZ</scp> 8 – Two Zircon Reference Materials for <scp>SIMS</scp> Uâ€Pb Geochronology. Geostandards and Geoanalytical Research, 2018, 42, 431-457.	3.1	32
38	Radio-colouration of diamond: a spectroscopic study. Contributions To Mineralogy and Petrology, 2013, 165, 843-861.	3.1	31
39	The nature of radiohaloes in biotite: Experimental studies and modeling. American Mineralogist, 2001, 86, 498-512.	1.9	30
40	Helium irradiation study on zircon. Contributions To Mineralogy and Petrology, 2011, 161, 777-789.	3.1	30
41	Gordaite [Zn ₄ Na(OH) ₆ (SO ₄)Cl.6H ₂ O]; second occurrence in the Juan de Fuca Ridge, and new data. American Mineralogist, 1998, 83, 1111-1116.	1.9	26
42	A photoluminescence study of REE ³⁺ emissions in radiation-damaged zircon. American Mineralogist, 2015, 100, 1123-1133.	1.9	26
43	Ca-rich majorite derived from high-temperature melt and thermally stressed hornblende in shock veins of crustal rocks from the Ries impact crater (Germany). Contributions To Mineralogy and Petrology, 2011, 161, 275-291.	3.1	25
44	On the breakdown of zircon upon "dry―thermal annealing. Mineralogy and Petrology, 2009, 97, 129-138.	1.1	24
45	Application of Raman-based images in the Earth sciences. Springer Series in Optical Sciences, 2012, , 145-187.	0.7	24
46	Raman study of radiation-damaged zircon under hydrostatic compression. Physics and Chemistry of Minerals, 2008, 35, 597-602.	0.8	23
47	Luminescence techniques in Earth Sciences. , 0, , 43-91.		23
48	In situ microâ€Raman and Xâ€ray diffraction study of diamonds and petrology of the new ureilite UAE 001 from the United Arab Emirates. Meteoritics and Planetary Science, 2008, 43, 1127-1136.	1.6	22
49	Electron-beam-induced annealing of natural zircon: a Raman spectroscopic study. Physics and Chemistry of Minerals, 2017, 44, 389-401.	0.8	22
50	Review of effects of radiation damage on the luminescence emission of minerals, and the example of He-irradiated CePO4. Mineralogy and Petrology, 2013, 107, 441-454.	1.1	21
51	Blue Zircon from Ratanakiri, Cambodia. Journal of Gemmology, 2018, 36, 112-132.	0.2	20
52	15. Spectroscopic methods applied to zircon. , 2003, , 427-468.		19
53	Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif, middle Urals, Russia. Mineralogy and Petrology, 2017, 111, 475-497.	1.1	18
54	Irradiation effects in monazite–(Ce) and zircon: Raman and photoluminescence study of Au-irradiated FIB foils. Physics and Chemistry of Minerals, 2018, 45, 855-871.	0.8	18

#	Article	IF	CITATIONS
55	The absence of metamictisation in natural monazite. Scientific Reports, 2020, 10, 14676.	3.3	18
56	Using Mg as a Proxy for Crystal Structure and Sr as an Indicator of Marine Growth in Vaterite and Aragonite Otoliths of Aquaculture Rainbow Trout. Transactions of the American Fisheries Society, 2009, 138, 1157-1165.	1.4	17
57	Chemical alteration patterns in metamict fergusonite. European Journal of Mineralogy, 2010, 22, 425-433.	1.3	15
58	<scp>GGR</scp> Biennial Critical Review: Analytical Developments Since 2010. Geostandards and Geoanalytical Research, 2012, 36, 337-398.	3.1	15
59	Retention of radiation damage in zircon xenocrysts from kimberlites, Northern Yakutia. Lithos, 2014, 206-207, 252-261.	1.4	15
60	Raman study of diamond-based abrasives, and possible artefacts in detecting UHP microdiamond. Lithos, 2016, 265, 317-327.	1.4	15
61	Crystal-structure properties and the molecular nature of hydrostatically compressed realgar. Physics and Chemistry of Minerals, 2012, 39, 399-412.	0.8	12
62	Crystal structure of Zn4Na(OH)6SO4Cl·6H2O. Journal of Chemical Crystallography, 1997, 27, 325-329.	1.1	11
63	The parisite–(Ce) enigma: challenges in the identification of fluorcarbonate minerals. Mineralogy and Petrology, 2021, 115, 1-19.	1.1	11
64	Shock-induced formation of kyanite (Al2SiO5) from sillimanite within a dense metamorphic rock from the Ries crater (Germany). Contributions To Mineralogy and Petrology, 2004, 148, 150-159.	3.1	10
65	Effects of irradiation damage on the back-scattering of electrons: Silicon-implanted silicon. American Mineralogist, 2007, 92, 1768-1771.	1.9	9
66	Spectroscopic study of inclusions in gem corundum from Mercaderes, Cauca, Colombia. Physics and Chemistry of Minerals, 2017, 44, 221-233.	0.8	6
67	Photoluminescence of synthetic titanite-group pigments: A rare quenching effect. Chemie Der Erde, 2014, 74, 419-424.	2.0	5
68	Majoritic garnet grains within shock-induced melt veins in amphibolites from the Ries impact crater suggest ultrahigh crystallization pressures between 18 and 9AGPa. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	5
69	Neoproterozoic amorphous "ekanite―(Ca2Th0.9U0.1Si8O20) from Okkampitiya, Sri Lanka: A metamict gemstone with excellent lead-retention performance. Geology, 2017, 45, 919-922.	4.4	5
70	Dry annealing of radiation-damaged zircon: Single-crystal X-ray and Raman spectroscopy study. Lithos, 2021, 406-407, 106523.	1.4	5
71	Phase Decomposition upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Ã~stfold, Norway. Chimia, 2010, 64, 705-711.	0.6	4
72	Luminescence spectroscopy and imaging: analytical advances and perspectives in the Earth sciences and related disciplines. Mineralogy and Petrology, 2013, 107, 349-351.	1.1	2

#	Article	IF	CITATIONS
73	Unusual paired pattern of radiohaloes on a diamond crystal from Guaniamo (Venezuela). Lithos, 2016, 265, 177-181.	1.4	1
74	RESOLVING LARGE MAGNITUDE AND WIDESPREAD ANNEALING OF LUNAR ZIRCON THROUGH CORRELATIVE SIMS, EBSD AND RAMAN SPECTROSCOPY. , 2017, , .		1
75	4He irradiation of zircon, ZrSiO4, using a micro-patterned, Si-based energy filter. Nuclear Instruments & Methods in Physics Research B, 2019, 443, 38-42.	1.4	1