Hakan Kayi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1100794/publications.pdf Version: 2024-02-01

ΗλκλΝ ΚΑΥΙ

#	Article	IF	CITATIONS
1	Anticancer investigation of platinum and copper-based complexes containing quinoxaline ligands. Journal of Molecular Structure, 2022, 1250, 131928.	1.8	3
2	Monodisperse-porous cerium oxide microspheres as a new support with appreciable catalytic activity for a composite catalyst in benzyl alcohol oxidation. New Journal of Chemistry, 2021, 45, 2019-2029.	1.4	6
3	Capture of Carbonyl Sulfide by Organic Liquid Mixtures: A Systematic DFT Investigation. Industrial & Engineering Chemistry Research, 2021, 60, 1366-1374.	1.8	6
4	Monodisperse-porous cerium oxide microspheres carrying iridium oxide nanoparticles as a heterogeneous catalyst for water oxidation. Applied Surface Science, 2021, 547, 149219.	3.1	6
5	Artificial Neural Network Prediction of Sulfur Content of Diesel fuel from its Physical Properties. IOP Conference Series: Materials Science and Engineering, 2019, 518, 062008.	0.3	0
6	Effect of chalcogen atoms on the electronic band gaps of donor-acceptor-donor type semiconducting polymers: a systematic DFT investigation. Journal of Molecular Modeling, 2019, 25, 167.	0.8	2
7	Radicalic cleavage pathway and DNA docking studies of novel chemotherapic platinum agent of 5,6-di-2-ithienyl-2,3-dihydropyrazine. Polyhedron, 2019, 170, 25-33.	1.0	4
8	Innovative Carbon Dioxideâ€Capturing Organic Solvent: Reaction Mechanism and Kinetics. Chemical Engineering and Technology, 2017, 40, 737-744.	0.9	8
9	Design of novel tellurium and selenium containing semiconducting polymers using quantum mechanical tools. Computational and Theoretical Chemistry, 2017, 1099, 45-54.	1.1	4
10	Experimental and theoretical investigation of the reaction between CO\$_{2}\$ and carbon dioxide binding organic liquids. Turkish Journal of Chemistry, 2016, 40, 706-719.	0.5	4
11	Kinetics of CO 2 capture by carbon dioxide binding organic liquids: Experimental and molecular modelling studies. International Journal of Greenhouse Gas Control, 2016, 49, 379-386.	2.3	18
12	Kinetics of CO2 Capture by Carbon Dioxide Binding Organic Liquids. Green Energy and Technology, 2016, , 591-603.	0.4	0
13	A theoretical investigation of 4,7-di(furan-2-yl)benzo[c][1,2,5]selenadiazole-based donor–acceptor type conjugated polymer. Computational and Theoretical Chemistry, 2015, 1054, 38-45.	1.1	7
14	Spectroelectrochemical Investigation of Nuclease Active Pt(II) Complexes Containing Pyrrole Oximeâ€. Electrochimica Acta, 2015, 158, 333-341.	2.6	3
15	Correlations between hardness, electrostatic interactions, and thermodynamic parameters in the decomposition reactions of 3-buten-1-ol, 3-methoxy-1-propene, and ethoxyethene. Structural Chemistry, 2015, 26, 547-554.	1.0	3
16	Conformational behaviors of trans-2,3- and trans-2,5-dihalo-1,4-diselenanes. A complete basis set, hybrid-density functional theory study and natural bond orbital interpretations. Journal of Molecular Modeling, 2014, 20, 2249.	0.8	9
17	A computational study on 4,7-di(furan-2-yl)benzo[c][1,2,5]thiadiazole monomer and its oligomers. Journal of Molecular Modeling, 2014, 20, 2269.	0.8	9
18	Deviations from Born–Oppenheimer Theory in Structural Chemistry: Jahn–Teller, Pseudo Jahn–Teller, and Hidden Pseudo Jahn–Teller Effects in C ₃ H ₃ and C ₃ H ₃ [–] . Journal of Physical Chemistry A, 2013, 117, 8671-8679.	1.1	16

Hakan Kayi

#	Article	IF	CITATIONS
19	Natural bond orbital, nuclear magnetic resonance analysis and hybrid-density functional theory study of Ïf-aromaticity in Al2F6, Al2Cl6, Al2Br6 and Al2I6. Journal of Molecular Modeling, 2013, 19, 2549-2557.	0.8	7
20	Pseudo Jahn–Teller origin of bending instability of triatomic molecules. Journal of Molecular Structure, 2012, 1023, 108-114.	1.8	16
21	A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid—from water clusters to interstellar ices. Physical Chemistry Chemical Physics, 2012, 14, 4942.	1.3	25
22	A computational study on the structures of methylamine–carbon dioxide–water clusters: evidence for the barrier free formation of the methylcarbamic acid zwitterion (CH3NH2+COOâ^') in interstellar water ices. Physical Chemistry Chemical Physics, 2011, 13, 11083.	1.3	21
23	A theoretical investigation of the low energy conformers of the isomers glycine and methylcarbamic acid and their role in the interstellar medium. Physical Chemistry Chemical Physics, 2011, 13, 15774.	1.3	17
24	AM1* parameters for palladium and silver. Journal of Molecular Modeling, 2011, 17, 2585-2600.	0.8	7
25	AM1* parameters for cobalt and nickel. Journal of Molecular Modeling, 2010, 16, 29-47.	0.8	18
26	AM1* parameters for gold. Journal of Molecular Modeling, 2010, 16, 1029-1038.	0.8	7
27	AM1* parameters for manganese and iron. Journal of Molecular Modeling, 2010, 16, 1109-1126.	0.8	12
28	AM1* parameters for bromine and iodine. Journal of Molecular Modeling, 2009, 15, 295-308.	0.8	22
29	AM1* parameters for vanadium and chromium. Journal of Molecular Modeling, 2009, 15, 1253-1269.	0.8	15
30	Ni(II), Cu(II), and Zn(II) complexes of tetradentate schiff base containing two thiadiazoles units: Structural, spectroscopic, magnetic properties, and molecular modeling studies. Heteroatom Chemistry, 2008, 19, 700-712.	0.4	21
31	AM1* parameters for copper and zinc. Journal of Molecular Modeling, 2007, 13, 965-979.	0.8	35
32	Prediction of lower critical solution temperature of N-isopropylacrylamide–acrylic acid copolymer by an artificial neural network model. Journal of Molecular Modeling, 2005, 11, 55-60.	0.8	12
33	Stimuli-responsive properties of aminophenylboronic acid-carrying thermosensitive copolymers. Polymer International, 2003, 52, 649-657.	1.6	30
34	Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism. Journal of Boron, 0, , .	0.0	0