Abolfazl Hajihassani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1100674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Four Populations of <i>Meloidogyne incognita</i> in Georgia, United States, Capable of Parasitizing Tomato-Bearing <i>Mi</i> -1.2 Gene. Plant Disease, 2022, 106, 137-143.	1.4	15
2	Occurrence of the Lance Nematode <i>Hoplolaimus stephanus</i> Infecting Bentgrass <i>Agrostis stolonifera</i> in Georgia, U.S.A Plant Health Progress, 2022, 23, 162-165.	1.4	1
3	Root-knot nematode management for pepper and squash rotations using plasticulture systems with fumigants and non-fumigant nematicides. Crop Protection, 2022, 152, 105844.	2.1	13
4	Evaluation of Pic-clor 60 [choloropicrin pre-mixed with 1,3 dicholoropropene] and soil-applied fungicides for the Fusarium wilt management in watermelon. Crop Protection, 2022, 154, 105894.	2.1	2
5	Evaluation of summer and winter cover crops for variations in host suitability for Meloidogyne incognita, M. arenaria and M.Âjavanica. Nematology, 2022, 24, 841-854.	0.6	3
6	Influence of the Environment and Vegetable Cropping Systems on Plant-Parasitic Nematode Communities in Southern Georgia. Plant Disease, 2021, 105, 3181-3191.	1.4	12
7	First Report of the Root-Knot Nematode, <i>Meloidogyne floridensis</i> , on Tomato in Georgia, U.S.A Plant Disease, 2021, 105, 1228.	1.4	10
8	The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens, 2021, 10, 796.	2.8	1
9	Economic Analysis of Grafting and Anaerobic Soil Disinfestation for Tomato Production in South Carolina. HortTechnology, 2021, 31, 615-624.	0.9	3
10	Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development. Plant Journal, 2021, 109, 477.	5.7	8
11	Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. Frontiers in Plant Science, 2020, 11, 1125.	3.6	111
12	Can Non-fumigant Nematicides Be an Alternative to Fumigation on Carrot Fields?. Communications in Soil Science and Plant Analysis, 2020, 51, 1826-1833.	1.4	2
13	Rapid detection of pecan root-knot nematode, Meloidogyne partityla, in laboratory and field conditions using loop-mediated isothermal amplification. PLoS ONE, 2020, 15, e0228123.	2.5	11
14	Characterization of Resistance to Major Tropical Root-Knot Nematodes (<i>Meloidogyne</i> spp.) in <i>Solanum sisymbriifolium</i> . Phytopathology, 2020, 110, 666-673.	2.2	20
15	First Report of the Spiral Nematode <i>Helicotylenchus microlobus</i> Infecting <i>Paspalum vaginatum</i> , Seashore Paspalum Turfgrass, in Georgia, U.S.A Plant Disease, 2020, 104, 2739.	1.4	5
16	First report of the stubby-root nematode Nanidorus minor infecting Paspalum vaginatum, seashore paspalum grass in Georgia, USA. Journal of Nematology, 2020, 52, 1-3.	0.9	0
17	Differences in parasitism of root-knot nematodes (Meloidogyne spp.) on oilseed radish and oat. Journal of Nematology, 2020, 52, 1-10.	0.9	3
18	Evaluation of Selected Nonfumigant Nematicides on Increasing Inoculation Densities of <i>Meloidogyne incognita</i> on Cucumber. Plant Disease, 2019, 103, 3161-3165.	1.4	40

#	Article	IF	CITATIONS
19	First Report of <i>Meloidogyne javanica</i> Infecting American Chestnut Trees (<i>Castanea) Tj ETQq1 1 0.784</i>	314 rgBT 1.4	/Ovgrlock 10
20	Developing a One-Step Multiplex PCR Assay for Rapid Detection of Four Stubby-Root Nematode Species, <i>Paratrichodorus allius</i> , <i>P. minor</i> , <i>P. porosus</i> , and <i>Trichodorus obtusus</i> . Plant Disease, 2019, 103, 404-410.	1.4	8
21	Resistant Pepper Carrying N, Me1, and Me3 have Different Effects on Penetration and Reproduction of Four Major Meloidogyne species. Journal of Nematology, 2019, 51, 1-9.	0.9	12
22	First report of <i>Meloidogyne javanica</i> on Ginger and Turmeric in the United States. Journal of Nematology, 2019, 51, 1-3.	0.9	3
23	Plant Parasitic Nematodes in Georgia and Alabama. Sustainability in Plant and Crop Protection, 2018, , 357-391.	0.4	16
24	An Improved Technique for Sorting Developmental Stages and Assessing Egg Viability of Globodera pallida using High-Throughput Complex Object Parametric Analyzer and Sorter. Plant Disease, 2018, 102, 2001-2008.	1.4	3
25	First Report of the Yellow Nutsedge Cyst Nematode, Heterodera cyperi, in Georgia, U.S.A Journal of Nematology, 2018, 50, 456-458.	0.9	2
26	First Report of Stubby-Root Nematode, <i>Paratrichodorus minor</i> , on Onion in Georgia, U.S.A. Journal of Nematology, 2018, 50, 453-455.	0.9	8
27	Influence of Temperature on Development and Reproduction of <i>Ditylenchus weischeri</i> and <i>D. dipsaci</i> on Yellow Pea. Plant Disease, 2017, 101, 297-305.	1.4	10
28	Host Preference and Seedborne Transmission of <i>Ditylenchus weischeri</i> and <i>D. dipsaci</i> on Select Pulse and Non-Pulse Crops Grown in the Canadian Prairies. Plant Disease, 2016, 100, 1087-1092.	1.4	15
29	Effects of Co-inoculation with <i>Pratylenchus thornei</i> and <i>Fusarium culmorum</i> on Growth and Yield of Winter Wheat. Plant Disease, 2013, 97, 1470-1477.	1.4	13
30	Interactions between Heterodera filipjevi and Fusarium culmorum, and between H. filipjevi and Bipolaris sorokiniana in winter wheat. Journal of Plant Diseases and Protection, 2013, 120, 77-84.	2.9	10