
Manping Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1100595/publications.pdf Version: 2024-02-01

MANDING IIA

#	Article	IF	CITATIONS
1	Soft and Ionâ€Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels. Advanced Healthcare Materials, 2020, 9, e1901372.	7.6	71
2	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. Journal of the American Chemical Society, 2020, 142, 6180-6187.	13.7	50
3	Ion onducting Hydrogels and Their Applications in Bioelectronics. Advanced Sustainable Systems, 2022, 6, 2100173.	5.3	41
4	Proton conductivity of glycosaminoglycans. PLoS ONE, 2019, 14, e0202713.	2.5	30
5	Machine Learningâ€Driven Bioelectronics for Closed‣oop Control of Cells. Advanced Intelligent Systems, 2020, 2, 2000140.	6.1	29
6	Natural biopolymers as proton conductors in bioelectronics. Biopolymers, 2021, 112, e23433.	2.4	26
7	Trapping and Characterization of Nontoxic AÎ ² 42 Aggregation Intermediates. ACS Chemical Neuroscience, 2019, 10, 3880-3887.	3.5	25
8	Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Materials, 2020, 8, .	5.1	18
9	Feedback Control of Bioelectronic Devices Using Machine Learning. , 2021, 5, 1133-1138.		18
10	The multi-channel potentiostat: Development and evaluation of a scalable mini-potentiostat array for investigating electrochemical reaction mechanisms. PLoS ONE, 2021, 16, e0257167.	2.5	16
11	Correlating Ionic Conductivity and Microstructure in Polyelectrolyte Hydrogels for Bioelectronic Devices. Macromolecular Rapid Communications, 2022, 43, e2100687.	3.9	13
12	A Microfluidic Ion Sensor Array. Small, 2020, 16, e1906436.	10.0	12
13	Control of pH in bioelectronics and applications. APL Materials, 2020, 8, .	5.1	9
14	A multi-ion electrophoretic pump for simultaneous on-chip delivery of H+, Na+, and Clâ^'. APL Materials, 2022, 10, .	5.1	8
15	Diverse Proton-Conducting Nanotubes via a Tandem Macrocyclization and Assembly Strategy. Journal of the American Chemical Society, 2021, 143, 8145-8153.	13.7	7
16	A feedback control architecture for bioelectronic devices with applications to wound healing. Journal of the Royal Society Interface, 2021, 18, 20210497.	3.4	7
17	Machine Learningâ€Driven Bioelectronics for Closed‣oop Control of Cells. Advanced Intelligent Systems, 2020, 2, 2070122.	6.1	3
18	Colloidal structure and proton conductivity of the gel within the electrosensory organs of cartilaginous fishes. IScience, 2021, 24, 102947.	4.1	2