
Xiang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1100569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society, 2014, 136, 16736-16739.	13.7	273
2	Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 287, 119953.	20.2	175
3	Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier's principle. Nature Catalysis, 2021, 4, 418-424.	34.4	146
4	Simultaneously Enhanced Stability and Selectivity for Propene Epoxidation with H ₂ and O ₂ on Au Catalysts Supported on Nano-Crystalline Mesoporous TS-1. ACS Catalysis, 2017, 7, 2668-2675.	11.2	120
5	Catalytic Transfer Hydrogenation of Biomassâ€Derived Substrates to Valueâ€Added Chemicals on Dualâ€Function Catalysts: Opportunities and Challenges. ChemSusChem, 2019, 12, 71-92.	6.8	109
6	Enhanced Catalytic Performance for Propene Epoxidation with H ₂ and O ₂ over Bimetallic Au–Ag/Uncalcined Titanium Silicate-1 Catalysts. ACS Catalysis, 2018, 8, 7799-7808.	11.2	94
7	Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2. Applied Catalysis B: Environmental, 2014, 150-151, 396-401.	20.2	91
8	Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2. Journal of Catalysis, 2014, 317, 99-104.	6.2	85
9	Maximizing Propylene Yield by Two-Stage Riser Catalytic Cracking of Heavy Oil. Industrial & Engineering Chemistry Research, 2007, 46, 4914-4920.	3.7	77
10	Dual Role of Pyridinic-N Doping in Carbon-Coated Ni Nanoparticles for Highly Efficient Electrochemical CO ₂ Reduction to CO over a Wide Potential Range. ACS Catalysis, 2022, 12, 1364-1374.	11.2	73
11	Characterization and Comparison of Nitrogen Compounds in Hydrotreated and Untreated Shale Oil by Electrospray Ionization (ESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR) Tj ETQq1 1	0.384314	1 rg&T /Over
12	Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: Effects of Si/Ti molar ratio and Au loading. Chemical Engineering Journal, 2015, 278, 234-239.	12.7	64
13	Tailoring Facets of α-Mn ₂ O ₃ Microcrystalline Catalysts for Enhanced Selective Oxidation of Glycerol to Glycolic Acid. ACS Catalysis, 2021, 11, 6371-6383.	11.2	64
14	Hierarchical ZSM-11 with intergrowth structures: Synthesis, characterization and catalytic properties. Journal of Energy Chemistry, 2013, 22, 761-768.	12.9	58
15	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie - International Edition, 2021, 60, 3443-3448.	13.8	58
16	Synergistic Pt/MgO/SBA-15 nanocatalysts for glycerol oxidation in base-free medium: Catalyst design and mechanistic study. Journal of Catalysis, 2019, 370, 434-446.	6.2	56
17	Synergistic effects of bimetallic PtRu/MCM-41 nanocatalysts for glycerol oxidation in base-free medium: Structure and electronic coupling dependent activity. Applied Catalysis B: Environmental, 2019, 259, 118070.	20.2	53
18	Au/TS-1 catalyst prepared by deposition–precipitation method for propene epoxidation with H2/O2: Insights into the effects of slurry aging time and Si/Ti molar ratio. Journal of Catalysis, 2015, 325, 128-135.	6.2	51

#	Article	IF	CITATIONS
19	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
20	Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Applied Catalysis B: Environmental, 2022, 306, 121116.	20.2	50
21	Ni–Co oxide catalysts with lattice distortions for enhanced oxidation of glycerol to glyceric acid. Journal of Catalysis, 2020, 381, 248-260.	6.2	48
22	Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst. Chemical Engineering Journal, 2019, 377, 119954.	12.7	46
23	Manipulating Gold Spatial Location on Titanium Silicalite-1 To Enhance the Catalytic Performance for Direct Propene Epoxidation with H ₂ and O ₂ . ACS Catalysis, 2018, 8, 10649-10657.	11.2	44
24	Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Applied Catalysis B: Environmental, 2021, 288, 119996.	20.2	44
25	Engineering Pt-Mn2O3 interface to boost selective oxidation of ethylene glycol to glycolic acid. Applied Catalysis B: Environmental, 2021, 284, 119803.	20.2	40
26	Identifying the role of Ni and Fe in Ni–Fe co-doped orthorhombic CoSe2 for driving enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta, 2020, 335, 135682.	5.2	39
27	Morphological insights into the catalytic aquathermolysis of crude oil with an easily prepared high-efficiency Fe3O4-containing catalyst. Fuel, 2019, 245, 420-428.	6.4	37
28	Bimetallic AuPt/TiO ₂ Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O ₂ . ACS Catalysis, 2020, 10, 10932-10945.	11.2	37
29	Liquid-Phase Epoxidation of Light Olefins over W and Nb Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4423-4452.	6.7	36
30	Insights into the synergy between recyclable magnetic Fe3O4 and zeolite for catalytic aquathermolysis of heavy crude oil. Applied Surface Science, 2018, 456, 140-146.	6.1	36
31	Au/TSâ€l catalyst for propene epoxidation with H ₂ /O ₂ : A novel strategy to enhance stability by tuning charging sequence. AICHE Journal, 2016, 62, 3963-3972.	3.6	35
32	Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts: Towards enhanced stability for propene epoxidation with H2 and O2. Chemical Engineering Journal, 2019, 377, 119927.	12.7	35
33	Structure and Reactivity of Iranian Vacuum Residue and Its Eight Group-Fractions. Energy & Fuels, 2017, 31, 8072-8086.	5.1	34
34	Tailoring the structure of Co-Mo/mesoporous γ-Al2O3 catalysts by adding multi-hydroxyl compound: A 3000†kt/a industrial-scale diesel ultra-deep hydrodesulfurization study. Chemical Engineering Journal, 2019, 377, 119706.	12.7	34
35	Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment. Journal of Cleaner Production, 2021, 308, 127283.	9.3	33
36	Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization, 2019, 34, 115-148.	6.8	32

#	Article	IF	CITATIONS
37	Effects of Temperature and Catalyst to Oil Weight Ratio on the Catalytic Conversion of Heavy Oil to Propylene Using ZSM-5 and USY Catalysts. Journal of Natural Gas Chemistry, 2007, 16, 92-99.	1.8	31
38	Selective oxidation of glycerol to carboxylic acids on Pt(111) in base-free medium: A periodic density functional theory investigation. Applied Surface Science, 2019, 497, 143661.	6.1	31
39	Seed-assisted synthesis of hierarchical nanosized TS-1 in a low-cost system for propylene epoxidation with H2O2. Applied Surface Science, 2019, 483, 652-660.	6.1	31
40	Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2. Green Energy and Environment, 2020, 5, 473-483.	8.7	30
41	Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations. Physical Chemistry Chemical Physics, 2019, 21, 19269-19280.	2.8	29
42	Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance. Catalysis Today, 2020, 347, 102-109.	4.4	29
43	Enhancing the dynamic electron transfer of Au species on wormhole-like TS-1 for boosting propene epoxidation performance with H2 and O2. Green Energy and Environment, 2020, 5, 433-443.	8.7	28
44	Enhanced performance of bimetallic PtCo/MCM-41 catalysts for glycerol oxidation in base-free medium. Catalysis Science and Technology, 2019, 9, 4909-4919.	4.1	27
45	Engineering dual bed hydrocracking catalyst towards enhanced high-octane gasoline generation from light cycle oil. Chemical Engineering Journal, 2020, 389, 123461.	12.7	27
46	Residue Catalytic Cracking Process for Maximum Ethylene and Propylene Production. Industrial & Engineering Chemistry Research, 2013, 52, 14366-14375.	3.7	25
47	Toward Selective Dehydrogenation of Glycerol to Lactic Acid over Bimetallic Pt–Co/CeO _{<i>x</i>} Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 14548-14558.	3.7	25
48	Regulating light olefins or aromatics production in ex-situ catalytic pyrolysis of biomass by engineering the structure of tin modified ZSM-5 catalyst. Bioresource Technology, 2021, 330, 124975.	9.6	25
49	Glycolic Acid Production from Ethylene Glycol via Sustainable Biomass Energy: Integrated Conceptual Process Design and Comparative Techno-economic–Society–Environment Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 10948-10962.	6.7	25
50	Mechanistic Insights into the Pore Confinement Effect on Bimolecular and Monomolecular Cracking Mechanisms of <i>N</i> -Octane over HY and HZSM-5 Zeolites: A DFT Study. Journal of Physical Chemistry C, 2018, 122, 12222-12230.	3.1	24
51	Producing glyceric acid from glycerol <i>via</i> integrating vacuum dividing wall columns: conceptual process design and techno-economic-environmental analysis. Green Chemistry, 2021, 23, 3664-3676.	9.0	24
52	Multifunctional Two-Stage Riser Catalytic Cracking of Heavy Oil. Industrial & Engineering Chemistry Research, 2013, 52, 658-668.	3.7	23
53	Structure and Composition Changes of Nitrogen Compounds during the Catalytic Cracking Process and Their Deactivating Effect on Catalysts. Energy & Fuels, 2017, 31, 3659-3668.	5.1	23
54	Efficient Conversion of Light Cycle Oil into High-Octane-Number Gasoline and Light Olefins over a Mesoporous ZSM-5 Catalyst. Energy & Fuels, 2017, 31, 6968-6976.	5.1	23

#	Article	IF	CITATIONS
55	Catalytic cracking of acetic acid and its ketene intermediate over HZSM-5 catalyst: A density functional theory study. Molecular Catalysis, 2017, 437, 11-17.	2.0	23
56	Effect of pore confinement on the adsorption of mono-branched alkanes of naphtha in ZSM-5 and Y zeolites. Applied Surface Science, 2017, 423, 131-138.	6.1	23
57	Comparative study of n-butane isomerization over SO42â^'/Al2O3-ZrO2 and HZSM-5 zeolites at low reaction temperatures. Applied Catalysis A: General, 2018, 550, 98-104.	4.3	23
58	Insights into the reaction pathway of thiophene hydrodesulfurization over corner site of MoS2 catalyst: A density functional theory study. Molecular Catalysis, 2019, 463, 45-53.	2.0	23
59	Revealing the Effect of Nickel Particle Size on Carbon Formation Type in the Methane Decomposition Reaction. Catalysts, 2020, 10, 890.	3.5	23
60	Synergistic Process for Coker Gas Oil Catalytic Cracking and Gasoline Reformation. Energy & Fuels, 2013, 27, 654-665.	5.1	22
61	Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst. International Journal of Hydrogen Energy, 2018, 43, 17112-17120.	7.1	22
62	Mesoporogen-Free Strategy to Construct Hierarchical TS-1 in a Highly Concentrated System for Gas-Phase Propene Epoxidation with H ₂ and O ₂ . ACS Applied Materials & Interfaces, 2021, 13, 26134-26142.	8.0	22
63	NiMgAlMo catalyst derived from a guest-host MoO42- mediated layered double hydroxide: High performance for the methane decomposition reaction. Applied Catalysis A: General, 2020, 597, 117551.	4.3	21
64	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	2.0	21
65	Research and development of hydrocracking catalysts and technologies in China. Frontiers of Chemical Science and Engineering, 2018, 12, 867-877.	4.4	20
66	Hydrogenation and TMP Coupling Process: Novel Process Design, Techno-Economic Analysis, Environmental Assessment and Thermo-Economic Optimization. Industrial & Engineering Chemistry Research, 2019, 58, 10482-10494.	3.7	20
67	Regulating catalyst morphology to boost the stability of Ni–Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating. Green Energy and Environment, 2021, 6, 283-290.	8.7	20
68	Catalytic Transfer Hydrogenolysis of Glycerol over Heterogeneous Catalysts: A Short Review on Mechanistic Studies. Chemical Record, 2021, 21, 1792-1810.	5.8	20
69	Promoting catalytic transfer hydrodecarbonylation of methyl stearate over bimetallic CoNi/HAP catalysts with strong electronic coupling effect. Applied Catalysis B: Environmental, 2022, 306, 121138.	20.2	20
70	Rationally constructed Ti sites of TS-1 for epoxidation reactions. Science Bulletin, 2021, 66, 1945-1949.	9.0	19
71	Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment. Energy Conversion and Management, 2022, 253, 115149.	9.2	19
72	lsomerization of <i>n</i> -Butane over SO ₄ ^{2–} /Al ₂ O ₃ –ZrO ₂ in a Circulated Fluidized Bed Reactor: Prospects for Commercial Application. Industrial & Engineering Chemistry Research, 2017, 56, 8456-8464.	3.7	18

#	Article	IF	CITATIONS
73	Pyridinic Nitrogenâ€Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the <i>N</i> â€Allylation Reaction. ChemSusChem, 2019, 12, 858-865.	6.8	18
74	Recent Advances on Purification of Lactic Acid. Chemical Record, 2020, 20, 1236-1256.	5.8	18
75	Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glyceric acid. Chemical Engineering Science, 2021, 230, 116191.	3.8	18
76	Green BTX production from methyl oleate over hierarchical HZSM-5 zeolites prepared by NaOH treatment. Fuel, 2021, 290, 119798.	6.4	18
77	Equivalent Reactor Network Model for the Modeling of Fluid Catalytic Cracking Riser Reactor. Industrial & Engineering Chemistry Research, 2015, 54, 8732-8742.	3.7	17
78	Interfacial catalysts for sustainable chemistry: advances on atom and energy efficient glycerol conversion to acrylic acid. Green Chemistry, 2021, 23, 51-76.	9.0	17
79	Octadecanol Production from Methyl Stearate by Catalytic Transfer Hydrogenation over Synergistic Co/HAP Catalysts. Energy & Fuels, 2021, 35, 9970-9982.	5.1	17
80	Fluid Catalytic Cracking Study of Coker Gas Oil: Effects of Processing Parameters on Sulfur and Nitrogen Distributions. Energy & Fuels, 2014, 28, 1362-1371.	5.1	16
81	Inductive effect of basic nitrogen compounds on coke formation during the catalytic cracking process. Catalysis Communications, 2016, 74, 95-98.	3.3	16
82	Synergistic Enhancement over Auâ€Pd/TSâ€1 Bimetallic Catalysts for Propylene Epoxidation with H 2 and O 2. ChemCatChem, 2019, 11, 5116-5123.	3.7	15
83	Titanosilicate zeolite supported Pt nanoparticles with electronic metal-support interactions for efficient methanol steam reforming. Catalysis Today, 2021, 382, 42-47.	4.4	15
84	In Situ Upgrading of Light Fluid Catalytic Cracking Naphtha for Minimum Loss. Industrial & Engineering Chemistry Research, 2013, 52, 6366-6376.	3.7	14
85	Adsorption and separation of n/iso-pentane on zeolites: A GCMC study. Journal of Molecular Graphics and Modelling, 2018, 80, 59-66.	2.4	14
86	Effect of dispersion on the adsorption of polycyclic aromatic hydrocarbons over the γ-Al2O3 (110) surface. Applied Surface Science, 2019, 486, 137-143.	6.1	14
87	Hydrogenolysis of Glycerol to Propylene Glycol: Energy, Tech-Economic, and Environmental Studies. Frontiers in Chemistry, 2021, 9, 778579.	3.6	14
88	Effects of Support and CO ₂ on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation. ACS Catalysis, 2022, 12, 5736-5749.	11.2	14
89	Effect of acid strength on the formation mechanism of tertiary butyl carbocation in initial C4 alkylation reaction over H-BEA zeolite: A density functional theory study. Catalysis Today, 2020, 355, 171-179.	4.4	13
90	Catalytic Transfer Hydrogenolysis of Bio-Polyols to Renewable Chemicals over Bimetallic PtPd/C Catalysts: Size-Dependent Activity and Selectivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 5305-5316.	6.7	13

#	Article	IF	CITATIONS
91	Reactant adsorption modulation by Fe and K in Pt catalyst for highly effective CO preferential oxidation in practical conditions. Chemical Engineering Journal, 2022, 444, 136661.	12.7	13
92	Tetrahedrally coordinated W(VI) species induced Lewis acid for stable catalytic cracking of 1-hexene to propene. Chemical Engineering Journal, 2022, 448, 137504.	12.7	13
93	Effect of Aluminum Addition and Surface Moisture Content on the Catalytic Activity of Sulfated Zirconia in n-Butane Isomerization. Industrial & Engineering Chemistry Research, 2019, 58, 14638-14645.	3.7	12
94	Diffusion properties of aromatic hydrocarbons in mesoporous alumina: A molecular dynamics study. Chemical Engineering Science, 2019, 204, 110-117.	3.8	12
95	Enhancing the Conversion of Polycyclic Aromatic Hydrocarbons from Naphthenic Heavy Oil: Novel Process Design, Comparative Techno-Economic Analysis, and Life Cycle Assessment. Industrial & Engineering Chemistry Research, 2020, 59, 20086-20101.	3.7	12
96	Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment. Energy, 2021, 237, 121530.	8.8	12
97	Technoeconomic Analysis and Life Cycle Assessment of Five VGO Processing Pathways in China. Energy & Fuels, 2019, 33, 12106-12120.	5.1	11
98	Effect of blending ratio on coke morphology and composition in co-coking of vacuum residue and bio-tar. Journal of Analytical and Applied Pyrolysis, 2019, 141, 104629.	5.5	11
99	Conceptual Coupled Process for Catalytic Cracking of High-Acid Crude Oil. Industrial & Engineering Chemistry Research, 2019, 58, 4794-4801.	3.7	11
100	Insight into the Effect of Lewis Acid of W/Al-MCM-41 Catalyst on Metathesis of 1-Butene and Ethylene. Applied Catalysis A: General, 2020, 604, 117772.	4.3	11
101	Enhancing light olefins and aromatics production from naphthenic-based vacuum gas oil: Process integration, techno-economic analysis and life cycle environmental assessment. Computers and Chemical Engineering, 2021, 146, 107207.	3.8	11
102	Deoxygenation mechanism of methyl butyrate on HZSM-5: A density functional theory study. Molecular Catalysis, 2019, 479, 110588.	2.0	10
103	Understanding the Effect of Acid Strength on the Alkane-Alkoxide Hydride Transfer Reaction over Solid Acid Catalysts: Insights from Density Functional Theory. Industrial & Engineering Chemistry Research, 2019, 58, 9314-9321.	3.7	10
104	Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. Chemical Record, 2019, 19, 1952-1994.	5.8	10
105	Synergistic Process for High Nitrogen Content Feedstocks Catalytic Cracking: A Case Study of Controlling the Reactions of Nitrogen Compounds in Situ. Industrial & Engineering Chemistry Research, 2014, 53, 5718-5727.	3.7	9
106	Novel Propylene Production Route: Utilizing Hydrotreated Shale Oil as Feedstock via Two-Stage Riser Catalytic Cracking. Energy & Fuels, 2015, 29, 7190-7195.	5.1	9
107	Influence of Lewis Acid on the Activity and Selectivity of Pt/MCM-41 (Al) Catalysts for Oxidation of C ₃ Polyols in Base-Free Medium. Industrial & Engineering Chemistry Research, 2019, 58, 20259-20269.	3.7	9
108	Fe ³⁺ -Mediated Pt/Y Zeolite Catalysts Display Enhanced Metal–Bronsted Acid Interaction and Synergistic Cascade Hydrogenolysis Reactions. Industrial & Engineering Chemistry Research, 2020, 59, 17387-17398.	3.7	9

#	Article	IF	CITATIONS
109	<scp>Auâ€Promoted</scp> Pt nanoparticles supported on <scp>MgO</scp> / <scp>SBA</scp> â€15 as an efficient catalyst for selective oxidation of glycerol. AICHE Journal, 2021, 67, e17196.	3.6	9
110	Effective Regulation of the Au Spatial Position in a Hierarchically Structured Au/HTS-1 Catalyst: To Boost the Catalytic Performance of Propene Epoxidation with H ₂ and O ₂ . ACS Sustainable Chemistry and Engineering, 2022, 10, 9515-9524.	6.7	9
111	Chemical Synthesis of Adipic Acid from Glucose and Derivatives: Challenges for Nanocatalyst Design. ACS Sustainable Chemistry and Engineering, 2020, 8, 18732-18754.	6.7	8
112	Synthesis of Hierarchical TS-1 Nanocrystals with Controllable Grain Size and Mesoporosity: Enhanced Performance for Chloropropylene Epoxidation. Industrial & Engineering Chemistry Research, 2020, 59, 9364-9371.	3.7	8
113	Electronic coupling enhanced PtCo/CeO2 hybrids as highly active catalysts for the key dehydrogenation step in conversion of bio-derived polyols. Chemical Engineering Science, 2021, 229, 116060.	3.8	8
114	Selective propylene epoxidation in liquid phase using highly dispersed Nb catalysts incorporated in mesoporous silicates. Chinese Journal of Chemical Engineering, 2018, 26, 1278-1284.	3.5	7
115	PtRu/Zn ₃ Ce ₁ O _x catalysts with Lewis acid–base pairs show synergistic performances for the conversion of glycerol in the absence of externally added H ₂ . Catalysis Science and Technology, 2020, 10, 4386-4395.	4.1	7
116	Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study. Chinese Journal of Chemical Engineering, 2022, 47, 174-184.	3.5	7
117	Strandberg-type polyoxometalate deriving O,P co-doped NiMoS/CC catalyst for highly efficient hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2022, 47, 25571-25582.	7.1	7
118	Adsorptive Removal of Acetaldehyde from Propylene Oxide Produced by the Hydrogen Peroxide to Propylene Oxide Process. ACS Omega, 2018, 3, 15272-15280.	3.5	6
119	Strong metal-support interaction of palladium carbide in PtPd/C catalysts for enhanced catalytic transfer hydrogenolysis of glycerol. Biomass and Bioenergy, 2022, 163, 106507.	5.7	6
120	Insights into the effect of surface functional groups on catalytic performance for hydrogen generation from sodium borohydride. RSC Advances, 2016, 6, 113260-113266.	3.6	5
121	Effect of Si/Al ratio on tetralin adsorption on Y zeolite: a DFT study. Molecular Simulation, 2017, 43, 945-952.	2.0	5
122	Promoting effect of Ni on the structure and electronic properties of NixMo(1â^'x)S2 catalyst and benzene adsorption: A periodic DFT study. Applied Surface Science, 2019, 471, 607-614.	6.1	5
123	Computation-guided descriptor for efficient zeolite catalysts screening in C4 alkylation process. Chemical Engineering Science, 2021, 241, 116726.	3.8	5
124	Jet Fuel Range Hydrocarbon Production from Propanal: Mechanistic Insights into Active Site Requirement of a Dual-Bed Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 9434-9446.	6.7	5
125	Micropore blocking strategy for mitigating adsorption and diffusion limitations in the direct epoxidation of propylene. Chemical Engineering Science, 2022, 253, 117574.	3.8	5
126	Theoretical and experimental investigations into light alkane dehydrogenation over chromium-containing catalyst. Fuel, 2022, 320, 123893.	6.4	5

#	Article	IF	CITATIONS
127	Insight into the selective oxidation mechanism of glycerol to 1, <scp>3â€dihydroxyacetone</scp> over <scp>AuCu–ZnO</scp> interface. AICHE Journal, 2022, 68, .	3.6	5
128	Understanding the Diffusion Properties of Sulfur-Containing Compounds in Mesoporous Alumina: A Molecular Dynamics Study. Industrial & Engineering Chemistry Research, 2022, 61, 3023-3030.	3.7	4
129	Versatile One-Pot Tandem Conversion of Biomass-Derived Light Oxygenates into High-Yield Jet Fuel Range Aromatics. Industrial & Engineering Chemistry Research, 2021, 60, 15095-15105.	3.7	3
130	A DFT Study for Catalytic Deoxygenation of Methyl Butyrate on a Lewis Acid Site of ZSM-5 Zeolite. Catalysts, 2020, 10, 1233.	3.5	2
131	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie, 2021, 133, 3485-3490.	2.0	2
132	Linear programming data reconciliation methods for multicomponent processes. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 81-89.	1.5	1
133	Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production. Chinese Journal of Chemical Engineering, 2021, 38, 98-105.	3.5	1
134	Experiment and Algorithm Research of Coal Direct Liquefaction Residual Oil Pyrolysis and Coking Technology Based on Lumped Kinetic Engineering. Journal of Mathematics, 2022, 2022, 1-8.	1.0	1
135	Efficient Method to Catch Adsorption Behavior: Understanding the Effect of Sodium Ions on Benzene/Thiophene Adsorption in Naâ€FAU. Advanced Theory and Simulations, 0, , 2100368.	2.8	0