P Boolchand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11004651/publications.pdf

Version: 2024-02-01

71102 91884 5,096 112 41 69 citations h-index g-index papers 114 114 114 1886 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Melt dynamics, nature of glass transition and topological phases of equimolar GexAsxS100â^2x ternary glasses. Journal of Alloys and Compounds, 2021, 868, 159101.	5.5	6
2	Evidence for 3-D network of P-centered pyramidal P(Se1/2)3 and quasi-tetrahedral Se P(Se1/2)3 local structures and their 3-membered ring super structure counterparts decoupled from quasi 1D-ethylene-like P2Se2+x (xÂ=Â2,1,0) chains in PxSe100â°x glasses. Journal of Alloys and Compounds, 2021, 895, 162645.	5.5	3
3	Response to "Comment on 'Molecular origin of aging of pure Se glass: Growth of inter-chain structural correlations, network compaction, and partial ordering'―[J. Chem. Phys. 148, 157101 (2018)]. Journal of Chemical Physics, 2018, 148, 157102.	3.0	O
4	119Sn Mössbauer spectroscopy of the time-resolved evolution of SnCl3â^ ligand structure on the surface of growing platinum nanoparticles. Applied Surface Science, 2018, 448, 362-368.	6.1	3
5	Glassy materials with enhanced thermal stability. MRS Bulletin, 2017, 42, 23-28.	3.5	22
6	Molecular origin of aging of pure Se glass: Growth of inter-chain structural correlations, network compaction, and partial ordering. Journal of Chemical Physics, 2017, 146, 224506.	3.0	22
7	Structural properties of Ge-S amorphous networks in relationship with rigidity transitions: An <i>ab initio</i> molecular dynamics study. Physical Review B, 2017, 96, .	3.2	20
8	Local- and intermediate-range structures of As–Se glasses from the stoichiometric to the stiffness transition region. Journal of Non-Crystalline Solids, 2016, 431, 31-35.	3.1	10
9	Structural singularities in GexTe100â^'x films. Journal of Chemical Physics, 2015, 143, 074502.	3.0	22
10	Rigidity transitions in glasses driven by changes in network dimensionality and structural groupings. Europhysics Letters, 2014, 108, 56001.	2.0	18
11	Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks. Journal of Applied Physics, 2014, 115, .	2.5	24
12	Topology and glass structure evolution in (BaO)x((B2O3)32(SiO2)68)100 â^' x ternaryâ€"Evidence of rigid, intermediate, and flexible phases. Journal of Chemical Physics, 2014, 140, 144506.	3.0	11
13	Designing heavy metal oxide glasses with threshold properties from network rigidity. Journal of Chemical Physics, 2014, 140, 014503.	3.0	14
14	Fragility and molar volumes of non-stoichiometric chalcogenides: The crucial role of melt/glass homogenization. Physica Status Solidi (B): Basic Research, 2014, 251, 1322-1329.	1.5	21
15	Crucial effect of melt homogenization on the fragility of non-stoichiometric chalcogenides. Journal of Chemical Physics, 2014, 140, 134501.	3.0	38
16	Topological Origin of Fragility, Network Adaptation, and Rigidity and Stress Transitions in Especially Homogenized Nonstoichiometric Binary Ge _{<i>x</i>} S _{100â€"<i>x</i>} Glasses. Journal of Physical Chemistry B, 2014, 118, 2249-2263.	2.6	42
17	Elastic Phases of Ge _{<i>x</i>} Sb _{<i>x</i>} Se _{100–2<i>x</i>} Ternary Glasses Driven by Topology. Journal of Physical Chemistry B, 2013, 117, 10027-10034.	2.6	20
18	Superstrong nature of covalently bonded glass-forming liquids at select compositions. Journal of Chemical Physics, 2013, 139, 164511.	3.0	53

#	Article	IF	CITATIONS
19	Midgap states, Raman scattering, glass homogeneity, percolative rigidity and stress transitions in chalcogenides. Physica Status Solidi (B): Basic Research, 2012, 249, 2013-2018.	1.5	16
20	Unexpected Behavior of Copper in Modified Ferrites during High Temperature WGS Reaction—Aspects of Fe ³⁺ ↔ Fe ²⁺ Redox Chemistry from M¶ssbauer and XPS Studies. Journal of Physical Chemistry C, 2012, 116, 11019-11031.	3.1	131
21	Meeting experimental challenges to physics of network glasses: Assessing the role of sample homogeneity. Solid State Communications, 2011, 151, 1851-1855.	1.9	44
22	Long term aging of selenide glasses: evidence of sub- <i>T</i> _g endotherms and pre- <i>T</i> _g exotherms. Journal of Physics Condensed Matter, 2010, 22, 065104.	1.8	46
23	Fast-ion conduction and flexibility and rigidity of solid electrolyte glasses. Physical Review B, 2009, 80, .	3.2	34
24	Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO ₃ –AgI glasses. Journal of Physics Condensed Matter, 2009, 21, 205106.	1.8	29
25	The effects of thermal annealing on the obliquely deposited Ag–Ge–S thin films. Journal of Physics and Chemistry of Solids, 2009, 70, 978-981.	4.0	5
26	Intermediate Phases, structural variance and network demixing in chalcogenides: The unusual case of group V sulfides. Journal of Non-Crystalline Solids, 2009, 355, 1773-1785.	3.1	44
27	Slab waveguides and nanoscale patterning of pulsed laser-deposited Ge0.2Se0.8 chalcogenide films. Applied Physics Letters, 2008, 93, .	3.3	17
28	Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mtext>As</mml:mtext></mml:mrow><mml:mi>x< Physical Review B, 2008, 78, .</mml:mi></mml:mrow></mml:math>	/mml:mi><	:/88 :/mml:msub
29	Origin of giant photocontraction in obliquely deposited amorphous <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ge</mml:mtext></mml:mrow><mml:mi>x< films and the intermediate phase. Physical Review B, 2008, 78, .</mml:mi></mml:msub></mml:mrow></mml:math>	/ <mark>%:2</mark> 1:mi>-	<∕mml:msub
30	Abrupt boundaries of intermediate phases and space filling in oxide glasses. Journal of Physics Condensed Matter, 2008, 20, 202101.	1.8	46
31	Chemical alloying and light-induced collapse of intermediate phases in chalcohalide glasses. Journal of Physics Condensed Matter, 2007, 19, 226201.	1.8	12
32	Fast-Ion Conduction and Flexibility of Glassy Networks. Physical Review Letters, 2007, 98, 195501.	7.8	59
33	Origin of Conductivity Threshold in the Solid Electrolyte Glass System: \$(hbox{Ag}_{2}) Tj ETQq1 1 0.784314 rg	BŢ./Overlo	ock 10 Tf 5 <mark>0</mark>
34	Raman scattering as a probe of intermediate phases in glassy networks. Journal of Raman Spectroscopy, 2007, 38, 660-672.	2.5	42
35	129I and 119Sn Mössbauer spectroscopy, reversibility window and nanoscale phase separation in binary GexSe1â^'x glasses. Physica B: Condensed Matter, 2007, 389, 18-28.	2.7	24
36	Raman spectroscopy study of the influence of processing conditions on the structure of polycrystalline diamond films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 179-189.	2.1	30

#	Article	IF	CITATIONS
37	Reversibility window in as-quenched Ge–As–S glasses. Journal of Physics and Chemistry of Solids, 2005, 66, 185-189.	4.0	15
38	Ageing, fragility and the reversibility window in bulk alloy glasses. Journal of Physics Condensed Matter, 2005, 17, L1-L7.	1.8	106
39	Direct evidence of rigidity loss and self-organization in silicate glasses. Journal of Physics Condensed Matter, 2005, 17, 4889-4896.	1.8	70
40	Shift in elastic phase boundaries due to nanoscale phase separation in network glasses: the case of GexAsxS1 â~' 2x. Philosophical Magazine, 2005, 85, 875-884.	1.6	35
41	Self-organization and the physics of glassy networks. Philosophical Magazine, 2005, 85, 3823-3838.	1.6	149
42	Pressure Raman effects and internal stress in network glasses. Physical Review B, 2005, 71, .	3.2	121
43	The thermally reversing window in ternary GexPxS1Â2xglasses. Journal of Physics Condensed Matter, 2004, 16, S5121-S5138.	1.8	17
44	Light-Induced Giant Softening of Network Glasses Observed near the Mean-Field Rigidity Transition. Physical Review Letters, 2004, 92, 245501.	7.8	63
45	Intrinsic nanoscale phase separation of bulk As2S3glass. Philosophical Magazine, 2003, 83, 2941-2953.	1.6	87
46	Evidence for nanoscale phase separation of stressed–rigid glasses. Journal of Physics Condensed Matter, 2003, 15, S2397-S2411.	1.8	61
47	Comment on "Microscopic Theory of Network Glasses― Physical Review Letters, 2003, 91, 159601; author repy 159602.	7.8	4
48	Macroscopic phase separation of Se-rich (x< 1/3) ternary Agy(GexSe1Âx)1Âyglasses. Journal of Physics Condensed Matter, 2003, 15, S1573-S1584.	1.8	37
49	The self-organized phase of bulk P x Se 1 â^' x glasses. Europhysics Letters, 2003, 62, 49-55.	2.0	42
50	Evidence for the Intermediate Phase in Chalcogenide Glasses. , 2002, , 65-84.		2
51	Nanoscale phase separation of GeS ₂ glass. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 1649-1657.	0.6	3
52	Rigidity Transition in Chalcogenide Glasses. , 2002, , 279-295.		2
53	The Intermediate Phase in Ternary Ge _x As _x Se _{1–2x} Glasses. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	14
54	Nuclear quadrupole resonance study of the glassy AsxSe1â^x system. Journal of Non-Crystalline Solids, 2002, 299-302, 958-962.	3.1	22

#	Article	lF	CITATIONS
55	Rigidity transitions in binary Ge–Se glasses and the intermediate phase. Journal of Non-Crystalline Solids, 2001, 293-295, 348-356.	3.1	181
56	Mobile silver ions and glass formation in solid electrolytes. Nature, 2001, 410, 1070-1073.	27.8	164
57	Growth and characterization of rare-earth monosulfides for cold cathode applications. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1958.	1.6	19
58	Sharp Rigid to Floppy Phase Transition Induced by Dangling Ends in a Network Glass. Physical Review Letters, 2001, 87, .	7.8	64
59	Glass structure, rigidity transitions and the intermediate phase in the Ge–As–Se ternary. Europhysics Letters, 2000, 52, 633-639.	2.0	107
60	Vibrational Excitations in Glasses — B. VIBRATIONAL EXCITATIONS IN GLASSES: RIGIDITY TRANSITION AND LAMB-MÖSSBAUER FACTORS. Series on Directions in Condensed Matter Physics, 2000, , 369-414.	0.1	5
61	The structural origin of broken chemical order in GeSe ₂ glass. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 1757-1772.	0.6	92
62	Glass Structure by Scattering Methods and Spectroscopy — B. MÖSSBAUER SPECTROSCOPY. Series on Directions in Condensed Matter Physics, 2000, , 191-247.	0.1	12
63	Stiffness transitions in SixSe1â^'xglasses from Raman scattering and temperature-modulated differential scanning calorimetry. Physical Review B, 2000, 61, 15061-15076.	3.2	173
64	Rigidity transitions and molecular structure of AsxSe1â^xglasses. Physical Review B, 2000, 62, R9228-R9231.	3.2	188
65	Dual Chemical Role of Ag as an Additive in Chalcogenide Glasses. Physical Review Letters, 1999, 83, 3848-3851.	7.8	152
66	Thermally reversing window and stiffness transitions in chalcogenide glasses. Solid State Communications, 1999, 111, 619-624.	1.9	80
67	Towards the Realization of a INP/CDS/LAS Cold Cathode. Materials Research Society Symposia Proceedings, 1999, 558, 545.	0.1	0
68	Microscopic origin of the glass forming tendency in chalcohalides and constraint theory. Journal of Non-Crystalline Solids, 1998, 240, 1-21.	3.1	35
69	Direct Evidence for Stiffness Threshold in Chalcogenide Glasses. Physical Review Letters, 1997, 78, 4422-4425.	7.8	277
70	Role of network connectivity on the elastic, plastic and thermal behavior of covalent glasses. Journal of Non-Crystalline Solids, 1997, 222, 137-143.	3.1	18
71	Medium range structure in a network glass established by a local probe. Journal of Non-Crystalline Solids, 1996, 195, 170-175.	3.1	10
72	Molecular Origin of Glass Forming Tendency in Ternary Te-Se-Br(Cl) Chalcohalide Glasses. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1996, 51, 373-380.	1.5	3

#	Article	IF	Citations
73	Nuclear Quadrupole Interactions as a Probe of Glass Molecular Structure. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1996, 51, 572-584.	1.5	2
74	Influence of one-fold-coordinated atoms on mechanical properties of covalent networks. Physical Review B, 1996, 53, 11488-11494.	3.2	56
75	Lamb-MÃ \P ssbauer factors as a local probe of floppy modes in network glasses. Journal of Non-Crystalline Solids, 1995, 182, 143-154.	3.1	39
76	Scientific Instruments, 1995, 66, 3051-3057.	1.3	11
77	<i>Response</i> : Broken Bond-Bending Constraints and Glass Formation in the Oxides. Science, 1995, 268, 1510-1511.	12.6	1
78	Glass-forming tendency, percolation of rigidity, and onefold-coordinated atoms in covalent networks. Physical Review B, 1994, 50, 10366-10368.	3.2	107
79	The Central Role of Broken Bond-Bending Constraints in Promoting Glass Formation in the Oxides. Science, 1994, 266, 1355-1357.	12.6	73
80	A Mössbauer spectroscopy study of nanoscale Ge–Sn dispersions prepared by ball milling. Journal of Materials Research, 1992, 7, 2876-2883.	2.6	17
81	Comparison of transport and magnetization critical currents incâ€axisâ€oriented Y1Ba2Cu3O7â^Îthin films. Journal of Applied Physics, 1992, 72, 1021-1029.	2.5	12
82	Comment on â€~â€~Structure of covalently bonded glass-forming melts: A full partial-structure-factor analysis of liquidGeSe2''. Physical Review Letters, 1992, 68, 252-252.	7.8	12
83	Variation of glass transition temperature, Tg, with average coordination number, 〉m〈, in network glasses: evidence of a threshold behavior in the slope dTg/d〉m〈 at the rigidity percolation threshold (〉m〈 = 2.4). Journal of Non-Crystalline Solids, 1992, 151, 149-154.	3.1	46
84	Vibrational densities of states and network rigidity in chalcogenide glasses. Physical Review B, 1991, 44, 94-100.	3.2	150
85	Insitupreparation of superconducting Y1Ba2Cu3O7â~δthin films by onâ€axis rf magnetron sputtering from a stoichiometric target. Applied Physics Letters, 1991, 58, 2036-2038.	3.3	24
86	Vibrational thresholds in covalent networks. Solid State Ionics, 1990, 39, 81-89.	2.7	49
87	Onset of rigidity inSe1â^'xGexglasses: Ultrasonic elastic moduli. Physical Review B, 1989, 39, 8702-8706.	3.2	55
88	STRUCTURAL ORIGIN OF GLASS FORMATION IN GROUP IV DISELENIDES. Phosphorous and Sulfur and the Related Elements, 1988, 38, 305-316.	0.2	2
89	Molecular structure and crystallization behavior of chalcogenide glasses. Journal of Non-Crystalline Solids, 1987, 91, 1-7.	3.1	3

#	Article	IF	CITATIONS
91	Coordination-number-induced morphological structural transition in a network glass. Physical Review B, 1987, 36, 8109-8114.	3.2	35
92	Vibrational densities of states for glassy se-ge alloys by neutron scattering., 1987,,.		0
93	Ultrasonic search for the floppy-rigid transition in bulk se _{1â€"x} ge _x glasses. , 1987, , .		O
94	GeSnSe3 glass â€" A novel exception to the Ioffe-Regel rule. Solid State Communications, 1987, 62, 197-200.	1.9	4
95	Structure of GeSsub2glass: Spectroscopic evidence for broken chemical order. Physical Review B, 1986, 33, 5421-5434.	3.2	123
96	Structural principles in network glasses. Hyperfine Interactions, 1986, 27, 3-14.	0.5	20
97	The molecular structure of As2Se3 glass. Hyperfine Interactions, 1986, 27, 385-388.	0.5	17
98	Molecular phase separation and cluster size in GeSe2 glass. Hyperfine Interactions, 1986, 27, 389-392.	0.5	8
99	Comment on   Rigidity percolation in the germanium-arsenic-selenium alloy system''. Physical Review Letters, 1986, 57, 3233-3233.	7.8	30
100	Rigidity Percolation and Molecular Clustering in Network Glasses. Physical Review Letters, 1986, 56, 2493-2496.	7.8	132
101	Mössbauer Spectroscopy – A Local Probe of Short and Medium Range Order in Network Glasses. Materials Research Society Symposia Proceedings, 1985, 61, 57.	0.1	O
102	Origin of glass formation. Physical Review Letters, 1985, 55, 242-245.	7.8	27
103	Molecular phase separation in stoichiometric chalcogenide glasses. Journal of Non-Crystalline Solids, 1985, 72, 1-22.	3.1	22
104	Universal structural phase transition in network glasses. Physical Review B, 1985, 31, 981-991.	3.2	62
105	Evidence for isoelectronic Sn for Ge substitution in crystalline and glassy GeSe2. Physical Review B, 1984, 29, 1-7.	3.2	28
106	Broken chemical order and phase separation in GexSelâ^'x glasses. Solid State Communications, 1983, 45, 183-185.	1.9	75
107	Universal structural phase transition in network glasses. Solid State Communications, 1983, 47, 199-202.	1.9	48
108	Direct evidence for intrinsically broken 8 -Ncoordination rule in melt-quenched glasses by a novel method. Physical Review B, 1982, 25, 2971-2974.	3.2	27

P BOOLCHAND

#	Article	IF	CITATIONS
109	Structural origin of broken chemical order in a GeSe2glass. Physical Review B, 1982, 25, 2975-2978.	3.2	114
110	Direct evidence for intrinsically broken chalcogen chemical order in GeSe2xTe2â^'2x alloy glasses. Nuclear Instruments & Methods in Physics Research, 1982, 199, 295-299.	0.9	5
111	Direct Evidence for Intrinsically Broken Chemical Ordering in Melt-Quenched Glasses. Physical Review Letters, 1981, 46, 1689-1692.	7.8	95
112	Mössbauer Spectroscopy of 125Te â€" Some New Results and Applications. , 1974, , 53-80.		13