List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11004048/publications.pdf Version: 2024-02-01

ANDREA MILDA

#	Article	lF	CITATIONS
1	Correlated electron–hole plasma in organometal perovskites. Nature Communications, 2014, 5, 5049.	12.8	497
2	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	3.3	175
3	Absorption F-Sum Rule for the Exciton Binding Energy in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 4566-4572.	4.6	149
4	Excited State Properties of Hybrid Perovskites. Accounts of Chemical Research, 2016, 49, 166-173.	15.6	144
5	Solutionâ€Processable Nearâ€IR Photodetectors Based on Electron Transfer from PbS Nanocrystals to Fullerene Derivatives. Advanced Materials, 2009, 21, 683-687.	21.0	121
6	One-Dimensional Random Lasing in a Single Organic Nanofiber. Journal of Physical Chemistry B, 2005, 109, 21690-21693.	2.6	84
7	Exciton–Exciton Interaction and Optical Gain in Colloidal CdSe/CdS Dot/Rod Nanocrystals. Advanced Materials, 2009, 21, 4942-4946.	21.0	82
8	Structure and Emission Properties of Er3Q9(Q = 8-Quinolinolate). Inorganic Chemistry, 2005, 44, 840-842.	4.0	81
9	The role of excitons in 3D and 2D lead halide perovskites. Journal of Materials Chemistry C, 2019, 7, 12006-12018.	5.5	80
10	Can Trihalide Lead Perovskites Support Continuous Wave Lasing?. Advanced Optical Materials, 2015, 3, 1557-1564.	7.3	72
11	Highly Emissive Nanostructured Thin Films of Organic Host–Guests for Energy Conversion. ChemPhysChem, 2009, 10, 647-653.	2.1	68
12	Colloidal Bi ₂ S ₃ Nanocrystals: Quantum Size Effects and Midgap States. Advanced Functional Materials, 2014, 24, 3341-3350.	14.9	65
13	Three-Dimensional Energy Transport in Highly Luminescent Hostâ^'Guest Crystals:Â A Quantitative Experimental and Theoretical Study. Journal of the American Chemical Society, 2007, 129, 8585-8593.	13.7	62
14	Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene. Journal of Physical Chemistry Letters, 2010, 1, 1149-1154.	4.6	54
15	Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites?. Advanced Optical Materials, 2018, 6, 1701254.	7.3	54
16	Light-Induced Charged and Trap States in Colloidal Nanocrystals Detected by Variable Pulse Rate Photoluminescence Spectroscopy. ACS Nano, 2013, 7, 229-238.	14.6	44
17	Organicâ^'Organic Heteroepitaxy of Red-, Green-, and Blue-Emitting Nanofibers. ACS Nano, 2010, 4, 6244-6250.	14.6	42
18	Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals. Nanotechnology, 2012, 23, 015201.	2.6	41

#	Article	IF	CITATIONS
19	Perovskite Excitonics: Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase. Advanced Optical Materials, 2018, 6, 1700839.	7.3	36
20	Nanosheets of Two-Dimensional Neutral Coordination Polymers Based on Near-Infrared-Emitting Lanthanides and a Chlorocyananilate Ligand. Chemistry of Materials, 2018, 30, 6575-6586.	6.7	36
21	Color Tuning of Nanofibers by Periodic Organic–Organic Hetero-Epitaxy. ACS Nano, 2012, 6, 4629-4638.	14.6	35
22	Heteroleptic NIR-Emitting Yb ^{III} /Anilate-Based Neutral Coordination Polymer Nanosheets for Solvent Sensing. ACS Applied Nano Materials, 2020, 3, 94-104.	5.0	29
23	Ultrafast Dynamics of Intersystem Crossing and Resonance Energy Transfer in Er(III)â^'Quinolinolate Complexes. Journal of Physical Chemistry Letters, 2010, 1, 2733-2737.	4.6	27
24	Opto-electronics of PbS quantum dot and narrow bandgap polymer blends. Journal of Materials Chemistry C, 2015, 3, 5499-5505.	5.5	26
25	Ln ₃ Q ₉ as a Molecular Framework for Ion‣izeâ€Driven Assembly of Heterolanthanide (Nd, Er, Yb) Multiple Nearâ€Infrared Emitters. Chemistry - A European Journal, 2015, 21, 3882-3885.	3.3	26
26	Layered Germanium Hybrid Perovskite Bromides: Insights from Experiments and Firstâ€Principles Calculations. Advanced Functional Materials, 2019, 29, 1903528.	14.9	26
27	Fully Efficient Direct Yb-to-Er Energy Transfer at Molecular Level in a Near-Infrared Emitting Heterometallic Trinuclear Quinolinolato Complex. Journal of Physical Chemistry Letters, 2013, 4, 3062-3066.	4.6	25
28	Bithiophene-based polybenzofulvene derivatives with high stacking and hole mobility. Polymer Chemistry, 2015, 6, 7377-7388.	3.9	24
29	Controlling Nd-to-Yb energy transfer through a molecular approach. Journal of Materials Chemistry C, 2015, 3, 11524-11530.	5.5	24
30	Extending the Lasing Wavelength Coverage of Organic Semiconductor Nanofibers by Periodic Organic–Organic Heteroepitaxy. Advanced Optical Materials, 2013, 1, 117-122.	7.3	23
31	Aggregation-Induced Förster Resonance Energy Transfer in Polybenzofulvene/Dye Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 18986-18991.	3.1	22
32	Temperature Tuning of Nonlinear Exciton Processes in Selfâ€Assembled Oligophenyl Nanofibers under Laser Action. Advanced Materials, 2008, 20, 3017-3021.	21.0	21
33	Spatial Control of 3D Energy Transfer in Supramolecular Nanostructured Hostâ^'Guest Architectures. Journal of Physical Chemistry B, 2009, 113, 10566-10570.	2.6	21
34	Light Conversion Control in NIR-Emissive Optical Materials Based on Heterolanthanide Er _{<i>x</i>} Yb _{3–<i>x</i>} Quinolinolato Molecular Components. Chemistry of Materials, 2015, 27, 4082-4092.	6.7	19
35	High efficient fluorescent stable colloidal sealed dye-doped mesostructured silica nanoparticles. Microporous and Mesoporous Materials, 2016, 225, 432-439.	4.4	19
36	Ag/In leadâ€free double perovskites. EcoMat, 2020, 2, e12017.	11.9	16

#	Article	lF	CITATIONS
37	Population Saturation in Trivalent Erbium Sensitized by Organic Molecular Antennae. Journal of Physical Chemistry Letters, 2010, 1, 141-144.	4.6	15
38	Dual Emitting [Yb(5,7ClQ) ₂ (H5,7ClQ) ₂ Cl]: Chemical and Photophysical Properties. ChemPlusChem, 2012, 77, 240-248.	2.8	15
39	Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals. Nanoscale, 2014, 6, 2238-2243.	5.6	15
40	Near IR to Red Up-Conversion in Tetracene/Pentacene Host/Guest Cocrystals Enhanced by Energy Transfer from Host to Guest. Journal of Physical Chemistry C, 2015, 119, 17495-17501.	3.1	15
41	Self-Assembled Lead Halide Perovskite Nanocrystals in a Perovskite Matrix. ACS Energy Letters, 2017, 2, 769-775.	17.4	15
42	Optical Sensitivity Gain in Silica-Coated Plasmonic Nanostructures. Journal of Physical Chemistry Letters, 2014, 5, 2935-2940.	4.6	14
43	Polaron Plasma in Equilibrium with Bright Excitons in 2D and 3D Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100295.	7.3	14
44	Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers. Journal of Physical Chemistry C, 2015, 119, 15689-15697.	3.1	12
45	Silica sol–gel glasses incorporating dual-luminescent Yb quinolinolato complex: processing, emission and photosensitising properties of the †antenna' ligand. Dalton Transactions, 2012, 41, 13147.	3.3	10
46	Bifacial Diffuse Absorptance of Semitransparent Microstructured Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 10021-10027.	8.0	10
47	Interface Properties of Organic <i>para</i> -Hexaphenyl/α-Sexithiophene Heterostructures Deposited on Highly Oriented Pyrolytic Graphite. Langmuir, 2013, 29, 14444-14450.	3.5	8
48	Heteroepitaxy of Organic Nanofibers: Example of Ternaphthalene on <i>p</i> -Hexaphenyl. Crystal Growth and Design, 2014, 14, 5719-5728.	3.0	7
49	Long-lived electrets and lack of ferroelectricity in methylammonium lead bromide CH ₃ NH ₃ PbBr ₃ ferroelastic single crystals. Physical Chemistry Chemical Physics, 2021, 23, 3233-3245.	2.8	7
50	Direct measurement of radiative decay rates in metal halide perovskites. Energy and Environmental Science, 2022, 15, 1211-1221.	30.8	7
51	Silicon-based fluorescent platforms for copper(<scp>ii</scp>) detection in water. RSC Advances, 2021, 11, 15557-15564.	3.6	6
52	Pressure response of decylammonium-containing 2D iodide perovskites. IScience, 2022, 25, 104057.	4.1	4
53	Synergic combination of the sol–gel method with dip coating for plasmonic devices. Beilstein Journal of Nanotechnology, 2015, 6, 500-507	2.8	3
54	Plasmonic Structures for Sensing and Emitting Devices. Journal of Physics: Conference Series, 2014, 566, 012015.	0.4	2

#	Article	IF	CITATIONS
55	Donor–acceptor photoexcitation dynamics in organic blends investigated with a high sensitivity pump–probe system. Journal of Materials Chemistry C, 2018, 6, 10822-10828.	5.5	2
56	Sol-gel silica films embedding NIR- emitting Yb-quinolinolate complexes. , 2014, , .		1
57	Multi-NIR-Emissive Materials based on Heterolanthanide Molecular Assemblies. MRS Advances, 2016, 1, 2683-2688.	0.9	1
58	Auger Recombination of Biexcitons and Charged Excitons in CdSe/CdS core/shell Nanocrystals. Materials Research Society Symposia Proceedings, 2012, 1409, 13.	0.1	0
59	Organic–Organic Heteroepitaxy—The Method of Choice to Tune Optical Emission of Organic Nano-fibers?. Springer Series in Materials Science, 2013, , 49-78.	0.6	0
60	Excited-State Dynamics and Laser Action in Epitaxial Organic Nanofibers. Springer Series in Materials Science, 2013, , 231-249.	0.6	0
61	Reversible Light-Induced On-Off Switching of Charge Traps in Quantum Dots Probe by Variable-Pulse-Rate Photoluminescence Spectroscopy Materials Research Society Symposia Proceedings, 2013, 1509, 1.	0.1	0
62	Multiband Laser Action from Organic-Organic Heteroepitaxial Nanofibers. Materials Research Society Symposia Proceedings, 2014, 1632, 1.	0.1	0
63	Ultrafast Optical Spectroscopy Techniques Applied to Colloidal Nanocrystals. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 483-485.	0.3	0

64 Optical Gain and Random Lasing in Self-Assembled Organic Nanofibers. , 2008, , 239-260.