Rina Tannenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11003541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decoration of cellulose nanocrystals with iron oxide nanoparticles. Materials Research Express, 2020, 7, 055003.	0.8	6
2	Biomimetic synthesis of two different types of renewable cellulosic nanomaterials for scaffolding in tissue engineering. Green Processing and Synthesis, 2018, 7, 181-190.	1.3	4
3	Design and Integration of a Nanohybrid Functional Biomaterial with Enhanced Mechanical and Thermal Properties. , 2015, , 55-67.		1
4	Biomimetic engineering of a fully bio-based system in nanomedicine. , 2014, , .		0
5	Structure Solution from Powder Diffraction of Copper 1,4â€Benzenedicarboxylate. European Journal of Inorganic Chemistry, 2014, 2014, 2140-2145.	1.0	59
6	The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomaterialia, 2013, 9, 6268-6277.	4.1	252
7	Design of a cellulose-based nanocomposite as a potential polymeric scaffold inÂtissue engineering. Polymer, 2013, 54, 2105-2114.	1.8	35
8	Design of a Nanobiomaterial from Renewable Resources. , 2013, , 293-302.		0
9	The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials, 2012, 33, 7386-7393.	5.7	99
10	Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomaterialia, 2012, 8, 878-885.	4.1	59
11	Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomaterialia, 2012, 8, 1966-1975.	4.1	169
12	Mechanism of the nanoparticle-catalyzed polymerization of furfuryl alcohol and the thermal and mechanical properties of the resulting nanocomposites. Composites Part B: Engineering, 2012, 43, 1139-1146.	5.9	40
13	Use of polyelectrolyte thin films to modulate Osteoblast response to microstructured titanium surfaces. Biomaterials, 2012, 33, 5267-5277.	5.7	33
14	Crystallization kinetics and anisotropic properties of polyethylene oxide/magnetic carbon nanotubes composite films. Polymer, 2012, 53, 2402-2411.	1.8	36
15	Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7, 50-59.	1.5	94
16	Enhancement of Surface Wettability via the Modification of Microtextured Titanium Implant Surfaces with Polyelectrolytes. Langmuir, 2011, 27, 5976-5985.	1.6	40
17	Magnetic Carbon Nanotubes: Synthesis, Characterization, and Anisotropic Electrical Properties. , 2011,		4
18	Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon, 2011, 49, 54-61.	5.4	102

Rina Tannenbaum

#	Article	IF	CITATIONS
19	The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 2011, 32, 3395-3403.	5.7	709
20	Facile Alignment of Carbon Nanotubes Mediated by Tethered Maghemite Nanoparticles. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	1
21	Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 2010, 131, 13-20.	2.2	305
22	Synthesis, Characterization, and Alignment of Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 6944-6951.	1.5	99
23	Self-Assembly of Organic Monolayers as Protective and Conductive Bridges for Nanometric Surface-Mount Applications. ACS Applied Materials & amp; Interfaces, 2010, 2, 2585-2593.	4.0	4
24	Formation of Ultrasmooth and Highly Stable Copper Surfaces through Annealing and Self-Assembly of Organic Monolayers. Langmuir, 2010, 26, 191-201.	1.6	21
25	Synthesis and Structure Characterization of Copper Terephthalate Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 2338-2343.	1.0	312
26	Scaling Aspects of Block Co-Polymer Adsorption on Curved Surfaces from Nonselective Solvents. Journal of Physical Chemistry B, 2008, 112, 5317-5326.	1.2	14
27	Adsorption of Block Copolymers from Selective Solvents on Curved Surfaces. Macromolecules, 2008, 41, 3190-3198.	2.2	14
28	Biobased Nanocomposites Prepared by In Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay. Macromolecules, 2008, 41, 8682-8687.	2.2	161
29	Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. Journal of Physical Chemistry C, 2008, 112, 1101-1108.	1.5	715
30	Surfactant effects on the particle size of iron (III) oxides formed by sol–gel synthesis. Journal of Non-Crystalline Solids, 2008, 354, 4063-4069.	1.5	11
31	Surfactant Effects on the Particle Size and Formation of Iron Oxides via a Sol—Gel Process. ACS Symposium Series, 2008, , 124-138.	0.5	2
32	Polymer Adsorption on Curved Surfaces:  A Geometric Approach. Journal of Physical Chemistry C, 2007, 111, 12369-12375.	1.5	33
33	Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon, 2007, 45, 2037-2046.	5.4	184
34	Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow. Langmuir, 2006, 22, 1858-1862.	1.6	66
35	Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties. Macromolecules, 2006, 39, 6565-6573.	2.2	332
36	Characterization of the Solâ^'Gel Formation of Iron(III) Oxide/Hydroxide Nanonetworks from Weak Base Molecules. Chemistry of Materials, 2006, 18, 4793-4801.	3.2	45

Rina Tannenbaum

#	Article	lF	CITATIONS
37	Experimental trends in polymer nanocomposites—a review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 393, 1-11.	2.6	1,036
38	Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Materials Research Bulletin, 2005, 40, 1506-1512.	2.7	112
39	Competitive Self-Assembly of Symmetrical, Difunctional Molecules on Ambient Copper Surfaces. Langmuir, 2005, 21, 5396-5404.	1.6	27
40	Polymer-Directed Nanocluster Synthesis:Â Control of Particle Size and Morphology. Macromolecules, 2005, 38, 4254-4259.	2.2	45
41	Adsorbtion of polyelectrolyte multilayers on plasma-modified porous polyethylene. Applied Surface Science, 2004, 238, 101-107.	3.1	8
42	Adsorption and Polymer Film Formation on Metal Nanoclusters. Macromolecules, 2003, 36, 6497-6502.	2.2	58
43	Wetting Characteristics of Plasma-Modified Porous Polyethylene. Langmuir, 2003, 19, 5869-5874.	1.6	34
44	Spectroscopic Study of the Chemistry at the Crâ^'PMMA Interface. Langmuir, 2002, 18, 5592-5599.	1.6	36
45	Radiation enhancement of the catalytic properties of three-dimensional coordination polymers of Ru(II) with diisocyanide ligands. Journal of Molecular Catalysis A, 1996, 107, 207-215.	4.8	25