Rina Tannenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11003541/publications.pdf

Version: 2024-02-01

45 papers

5,442 citations

172443 29 h-index 276858 41 g-index

45 all docs

45 docs citations

45 times ranked

8806 citing authors

#	Article	IF	CITATIONS
1	Experimental trends in polymer nanocompositesâ€"a review. Materials Science & Dience & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 393, 1-11.	5.6	1,036
2	Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. Journal of Physical Chemistry C, 2008, 112, 1101-1108.	3.1	715
3	The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 2011, 32, 3395-3403.	11.4	709
4	Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties. Macromolecules, 2006, 39, 6565-6573.	4.8	332
5	Synthesis and Structure Characterization of Copper Terephthalate Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 2338-2343.	2.0	312
6	Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 2010, 131, 13-20.	4.4	305
7	The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomaterialia, 2013, 9, 6268-6277.	8.3	252
8	Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon, 2007, 45, 2037-2046.	10.3	184
9	Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomaterialia, 2012, 8, 1966-1975.	8.3	169
10	Biobased Nanocomposites Prepared by In Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay. Macromolecules, 2008, 41, 8682-8687.	4.8	161
11	Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Materials Research Bulletin, 2005, 40, 1506-1512.	5.2	112
12	Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon, 2011, 49, 54-61.	10.3	102
13	Synthesis, Characterization, and Alignment of Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 6944-6951.	3.1	99
14	The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials, 2012, 33, 7386-7393.	11.4	99
15	Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7, 50-59.	3.1	94
16	Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow. Langmuir, 2006, 22, 1858-1862.	3.5	66
17	Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomaterialia, 2012, 8, 878-885.	8.3	59
18	Structure Solution from Powder Diffraction of Copper 1,4â€Benzenedicarboxylate. European Journal of Inorganic Chemistry, 2014, 2014, 2140-2145.	2.0	59

#	Article	IF	CITATIONS
19	Adsorption and Polymer Film Formation on Metal Nanoclusters. Macromolecules, 2003, 36, 6497-6502.	4.8	58
20	Polymer-Directed Nanocluster Synthesis:Â Control of Particle Size and Morphology. Macromolecules, 2005, 38, 4254-4259.	4.8	45
21	Characterization of the Solâ^Gel Formation of Iron(III) Oxide/Hydroxide Nanonetworks from Weak Base Molecules. Chemistry of Materials, 2006, 18, 4793-4801.	6.7	45
22	Enhancement of Surface Wettability via the Modification of Microtextured Titanium Implant Surfaces with Polyelectrolytes. Langmuir, 2011, 27, 5976-5985.	3.5	40
23	Mechanism of the nanoparticle-catalyzed polymerization of furfuryl alcohol and the thermal and mechanical properties of the resulting nanocomposites. Composites Part B: Engineering, 2012, 43, 1139-1146.	12.0	40
24	Spectroscopic Study of the Chemistry at the Crâ^'PMMA Interface. Langmuir, 2002, 18, 5592-5599.	3 . 5	36
25	Crystallization kinetics and anisotropic properties of polyethylene oxide/magnetic carbon nanotubes composite films. Polymer, 2012, 53, 2402-2411.	3 . 8	36
26	Design of a cellulose-based nanocomposite as a potential polymeric scaffold inÂtissue engineering. Polymer, 2013, 54, 2105-2114.	3.8	35
27	Wetting Characteristics of Plasma-Modified Porous Polyethylene. Langmuir, 2003, 19, 5869-5874.	3.5	34
28	Polymer Adsorption on Curved Surfaces:  A Geometric Approach. Journal of Physical Chemistry C, 2007, 111, 12369-12375.	3.1	33
29	Use of polyelectrolyte thin films to modulate Osteoblast response to microstructured titanium surfaces. Biomaterials, 2012, 33, 5267-5277.	11.4	33
30	Competitive Self-Assembly of Symmetrical, Difunctional Molecules on Ambient Copper Surfaces. Langmuir, 2005, 21, 5396-5404.	3 . 5	27
31	Radiation enhancement of the catalytic properties of three-dimensional coordination polymers of Ru(II) with diisocyanide ligands. Journal of Molecular Catalysis A, 1996, 107, 207-215.	4.8	25
32	Formation of Ultrasmooth and Highly Stable Copper Surfaces through Annealing and Self-Assembly of Organic Monolayers. Langmuir, 2010, 26, 191-201.	3.5	21
33	Scaling Aspects of Block Co-Polymer Adsorption on Curved Surfaces from Nonselective Solvents. Journal of Physical Chemistry B, 2008, 112, 5317-5326.	2.6	14
34	Adsorption of Block Copolymers from Selective Solvents on Curved Surfaces. Macromolecules, 2008, 41, 3190-3198.	4.8	14
35	Surfactant effects on the particle size of iron (III) oxides formed by sol–gel synthesis. Journal of Non-Crystalline Solids, 2008, 354, 4063-4069.	3.1	11
36	Adsorbtion of polyelectrolyte multilayers on plasma-modified porous polyethylene. Applied Surface Science, 2004, 238, 101-107.	6.1	8

3

#	Article	IF	CITATIONS
37	Decoration of cellulose nanocrystals with iron oxide nanoparticles. Materials Research Express, 2020, 7, 055003.	1.6	6
38	Self-Assembly of Organic Monolayers as Protective and Conductive Bridges for Nanometric Surface-Mount Applications. ACS Applied Materials & Interfaces, 2010, 2, 2585-2593.	8.0	4
39	Magnetic Carbon Nanotubes: Synthesis, Characterization, and Anisotropic Electrical Properties. , 2011,		4
40	Biomimetic synthesis of two different types of renewable cellulosic nanomaterials for scaffolding in tissue engineering. Green Processing and Synthesis, 2018, 7, 181-190.	3.4	4
41	Surfactant Effects on the Particle Size and Formation of Iron Oxides via a Sol—Gel Process. ACS Symposium Series, 2008, , 124-138.	0.5	2
42	Facile Alignment of Carbon Nanotubes Mediated by Tethered Maghemite Nanoparticles. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	1
43	Design and Integration of a Nanohybrid Functional Biomaterial with Enhanced Mechanical and Thermal Properties., 2015,, 55-67.		1
44	Biomimetic engineering of a fully bio-based system in nanomedicine. , 2014, , .		0
45	Design of a Nanobiomaterial from Renewable Resources. , 2013, , 293-302.		O