Mohd Warid Hussin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11002281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coal bottom ash as sand replacement in concrete: A review. Construction and Building Materials, 2020, 236, 117507.	7.2	98
2	Mixture optimization of high-strength blended concrete using central composite design. Construction and Building Materials, 2020, 243, 118251.	7.2	37
3	Properties of high strength palm oil clinker lightweight concrete containing palm oil fuel ash in tropical climate. Construction and Building Materials, 2019, 199, 163-177.	7.2	62
4	Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste. E3S Web of Conferences, 2018, 34, 01008.	0.5	0
5	Microstructures and physical properties of waste garnets as a promising construction materials. Case Studies in Construction Materials, 2018, 8, 87-96.	1.7	26
6	Realisation of enhanced self-compacting geopolymer concrete using spent garnet as sand replacement. Magazine of Concrete Research, 2018, 70, 558-569.	2.0	18
7	Self-compacting geopolymer concrete with spend garnet as sand replacement. Journal of Building Engineering, 2018, 15, 85-94.	3.4	57
8	Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity. AEJ - Alexandria Engineering Journal, 2018, 57, 3375-3386.	6.4	88
9	Effect of Using Micropalm Oil Fuel Ash as Partial Replacement of Cement on the Properties of Cement Mortar. Advances in Materials Science and Engineering, 2018, 2018, 1-8.	1.8	6
10	Use of an agricultural by-product, nano sized Palm Oil Fuel Ash as a supplementary cementitious material. Construction and Building Materials, 2018, 183, 139-149.	7.2	61
11	Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Applied Acoustics, 2017, 122, 113-120.	3.3	52
12	Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 2017, 143, 234-246.	7.2	50
13	Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement. International Journal of Pavement Research and Technology, 2017, 10, 383-392.	2.6	40
14	Influence of Oil Palm Biomass Waste on Compressive Strength and Chloride Penetration of Mortar. MATEC Web of Conferences, 2017, 138, 01008.	0.2	2
15	MECHANICAL PROPERTIES OF SELF-COMPACTING GEOPOLYMER CONCRETE CONTAINING SPENT GARNET AS REPLACEMENT FOR FINE AGGREGATE. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.4	12
16	Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building. MATEC Web of Conferences, 2016, 47, 04020.	0.2	14
17	Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 2016, 116, 15-24.	7.2	346
18	Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Construction and Building Materials, 2016, 126, 1054-1065.	7.2	69

#	Article	IF	CITATIONS
19	Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Construction and Building Materials, 2016, 125, 1229-1240.	7.2	167
20	Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Construction and Building Materials, 2016, 120, 72-79.	7.2	258
21	On blended cement and geopolymer concretes containing palm oil fuel ash. Materials and Design, 2016, 89, 385-398.	7.0	115
22	MECHANICAL PROPERTIES AND SELF-HEALING MECHANISM OF EPOXY MORTAR. Jurnal Teknologi (Sciences) Tj	ето _q о 0 с 0.4	rgBT /Overlo
23	EFFECT OF CERAMIC AGGREGATE ON HIGH STRENGTH MULTI BLENDED ASH GEOPOLYMER MORTAR. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	8
24	PERFORMANCE OF EPOXY RESIN AS SELF-HEALING AGENT. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	1
25	PROPERTIES OF MORTAR CONTAINING CERAMIC POWDER WASTE AS CEMENT REPLACEMENT. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	14
26	EFFECTIVENESS OF PALM OIL FUEL ASH AS MICRO-FILLER IN POLYMER CONCRETE. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	0
27	LONG TERM STUDIES ON COMPRESSIVE STRENGTH OF HIGH VOLUME NANO PALM OIL FUEL ASH MORTAR MIXES. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	9
28	INCORPORATION OF HOMOGENOUS CERAMIC TILE WASTE TO ENHANCE MECHANICAL PROPERTIES OF MORTAR. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	0
29	The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar. Construction and Building Materials, 2015, 93, 29-34.	7.2	81
30	Properties of Mortar Containing High Volume Palm Oil Biomass Waste. Advanced Materials Research, 2015, 1113, 578-585.	0.3	5
31	Strength properties and molecular composition of epoxy-modified mortars. Construction and Building Materials, 2015, 94, 315-322.	7.2	60
32	Evaluation of effectiveness of methyl methacrylate as retarder additive in polymer concrete. Construction and Building Materials, 2015, 93, 449-456.	7.2	24
33	Application ofProteus mirabilisandProteus vulgarismixture to design self-healing concrete. Desalination and Water Treatment, 2014, 52, 3623-3630.	1.0	42
34	Application of a grounded group decision-making (GGDM) model: a case of micro-organism optimal inoculation method in biological self-healing concrete. Desalination and Water Treatment, 2014, 52, 3594-3599.	1.0	12
35	Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials, 2013, 47, 1243-1248.	7.2	106
36	Effect of Mixing Constituent toward Engineering Properties of POFA Cement-Based Aerated Concrete. Journal of Materials in Civil Engineering, 2010, 22, 287-295.	2.9	43

#	Article	IF	CITATIONS
37	Properties of aerated concrete containing various amount of palm oil fuel ash, water content and binder sand ratio. , 2010, , .		7
38	GGBFS as potential filler in polyester grout: Flexural strength and toughness. Construction and Building Materials, 2009, 23, 2007-2015.	7.2	13
39	Mix Design and Compressive Strength of Geopolymer Concrete Containing Blended Ash from Agro-Industrial Wastes. Advanced Materials Research, 0, 339, 452-457.	0.3	43
40	Degree of Hardening of Epoxy-Modified Mortars without Hardener in Tropical Climate Curing Regime. Advanced Materials Research, 0, 1113, 28-35.	0.3	6
41	Effect of Curing Conditions on Compressive Strength of FA-POFA-based Geopolymer Mortar. IOP Conference Series: Materials Science and Engineering, 0, 431, 092007.	0.6	6