
Laurence Lanfumey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11000843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key role of the 5-HT1A receptor addressing protein Yif1B in serotonin neurotransmission and SSRI treatment. Journal of Psychiatry and Neuroscience, 2020, 45, 344-355.	2.4	7
2	Cerebral oxidative metabolism mapping in four genetic mouse models of anxiety and mood disorders. Behavioural Brain Research, 2019, 356, 435-443.	2.2	6
3	5-HTT independent effects of fluoxetine on neuroplasticity. Scientific Reports, 2019, 9, 6311.	3.3	30
4	Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology, 2018, 235, 2195-2220.	3.1	184
5	Neuroepigenetics of Neurotrophin Signaling: Neurobiology of Anxiety and Affective Disorders. Progress in Molecular Biology and Translational Science, 2018, 158, 159-193.	1.7	14
6	Response of <i>Htr3a</i> knockout mice to antidepressant treatment and chronic stress. British Journal of Pharmacology, 2017, 174, 2471-2483.	5.4	21
7	Environmental enrichment reduces innate anxiety with no effect on depression-like behaviour in mice lacking the serotonin transporter. Behavioural Brain Research, 2017, 332, 355-361.	2.2	31
8	Effect of agomelatine on memory deficits and hippocampal gene expression induced by chronic social defeat stress in mice. Scientific Reports, 2017, 7, 45907.	3.3	33
9	Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors. PLoS Biology, 2015, 13, e1002194.	5.6	157
10	Biological rhythms and melatonin in mood disorders and their treatments. , 2013, 138, 176-184.		76
11	Differential effects of early environmental enrichment on emotionality related behaviours in Huntington's disease transgenic mice. Journal of Physiology, 2013, 591, 41-55.	2.9	40
12	Regulation of serotonin (5-HT) function by a VGLUT1 dependent glutamate pathway. Neuropharmacology, 2013, 70, 190-199.	4.1	7
13	A Functional Tph2 C1473G Polymorphism Causes an Anxiety Phenotype via Compensatory Changes in the Serotonergic System. Neuropsychopharmacology, 2012, 37, 1986-1998.	5.4	26
14	Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2485-2494.	4.0	164
15	Early exposure to ethanol differentially affects ethanol preference at adult age in two inbred mouse strains. Neuropharmacology, 2012, 63, 338-348.	4.1	8
16	Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neuroscience and Biobehavioral Reviews, 2012, 36, 696-726.	6.1	42
17	Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. International Journal of Neuropsychopharmacology, 2011, 14, 927-940.	2.1	36
18	Altered expression of neuronal tryptophan hydroxylase-2 mRNA in the dorsal and median raphe nuclei of three genetically modified mouse models relevant to depression and anxiety. Journal of Chemical Neuroanatomy, 2011, 41, 227-233.	2.1	13

LAURENCE LANFUMEY

#	Article	IF	CITATIONS
19	Severe Serotonin Depletion after Conditional Deletion of the Vesicular Monoamine Transporter 2 Gene in Serotonin Neurons: Neural and Behavioral Consequences. Neuropsychopharmacology, 2011, 36, 2538-2550.	5.4	71
20	5â€HT _{2C} receptor activation prevents stressâ€induced enhancement of brain 5â€HT turnover and extracellular levels in the mouse brain: modulation by chronic paroxetine treatment. Journal of Neurochemistry, 2010, 115, 438-449.	3.9	49
21	VGLUT3 (Vesicular Glutamate Transporter Type 3) Contribution to the Regulation of Serotonergic Transmission and Anxiety. Journal of Neuroscience, 2010, 30, 2198-2210.	3.6	159
22	Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. International Journal of Neuropsychopharmacology, 2010, 13, 759-774.	2.1	103
23	Acute and chronic effects of citalopram on 5â€HT _{1A} receptor—Labeling by [¹⁸ F]MPPF and—Coupling to receptorsâ€G proteins. Synapse, 2009, 63, 106-116.	1.2	19
24	Lack of CB ₁ receptor activity impairs serotonergic negative feedback. Journal of Neurochemistry, 2009, 109, 935-944.	3.9	85
25	Corticosteroid–serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neuroscience and Biobehavioral Reviews, 2008, 32, 1174-1184.	6.1	296
26	Chronic voluntary ethanol intake hypersensitizes 5â€HT _{1A} autoreceptors in C57BL/6J mice. Journal of Neurochemistry, 2008, 107, 1660-1670.	3.9	42
27	Differential long-term effects of MDMA on the serotoninergic system and hippocampal cell proliferation in 5-HTT knock-out vs. wild-type mice. International Journal of Neuropsychopharmacology, 2008, 11, 1149.	2.1	39
28	Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype. International Journal of Neuropsychopharmacology, 2008, 11, 79-92.	2.1	54
29	Life-Long Hippocampal Neurogenesis: Environmental, Pharmacological and Neurochemical Modulations. Neurochemical Research, 2007, 32, 1762-1771.	3.3	46
30	Microdialysis Approach to Study Serotonin Outflow in Mice Following Selective Serotonin Reuptake Inhibitors and Substance P (Neurokinin 1) Receptor Antagonist Administration: A Review. Current Drug Targets, 2006, 7, 187-201.	2.1	23
31	Regional Differences in the Coupling of 5-Hydroxytryptamine-1A Receptors to G Proteins in the Rat Brain. Molecular Pharmacology, 2006, 70, 1013-1021.	2.3	123
32	Sustained pharmacological blockade of NK1 substance P receptors causes functional desensitization of dorsal raphe 5-HT1A autoreceptors in mice. Journal of Neurochemistry, 2005, 95, 1713-1723.	3.9	28
33	5-HT1 Receptors. CNS and Neurological Disorders, 2004, 3, 1-10.	4.3	133
34	Neurochemical and Behavioral Alterations in Glucocorticoid Receptor-Impaired Transgenic Mice after Chronic Mild Stress. Journal of Neuroscience, 2004, 24, 2787-2796.	3.6	108
35	GABAB receptors in 5-HT transporter- and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. Journal of Neurochemistry, 2004, 89, 886-896.	3.9	33
36	Serotonin transporter in substance P (neurokinin 1) receptor knock-out mice. European Journal of Pharmacology, 2004, 492, 41-48.	3.5	7

LAURENCE LANFUMEY

#	Article	IF	CITATIONS
37	Blockade of substance P (neurokinin 1) receptors enhances extracellular serotonin when combined with a selective serotonin reuptake inhibitor: an in vivo microdialysis study in mice. Journal of Neurochemistry, 2004, 89, 54-63.	3.9	60
38	Differential effects of the novel antidepressant agomelatine (S 20098) versus fluoxetine on 5-HT1A receptors in the rat brain. Neuropharmacology, 2004, 47, 515-526.	4.1	69
39	5-Hydroxytryptamine (5-HT) _{1A} Autoreceptor Adaptive Changes in Substance P (Neurokinin 1) Receptor Knock-Out Mice Mimic Antidepressant-Induced Desensitization. Journal of Neuroscience, 2001, 21, 8188-8197.	3.6	133
40	Functional Consequences of 5-HT Transporter Gene Disruption on 5-HT _{1A} Receptor-Mediated Regulation of Dorsal Raphe and Hippocampal Cell Activity. Journal of Neuroscience, 2001, 21, 2178-2185.	3.6	96
41	5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochemical Research, 2000, 25, 1199-1206.	3.3	73
42	Homeostatic Regulation of Serotonergic Function by the Serotonin Transporter As Revealed by Nonviral Gene Transfer. Journal of Neuroscience, 2000, 20, 5065-5075.	3.6	51
43	Central 5-HT1A receptors: regional distribution and functional characteristics. Nuclear Medicine and Biology, 2000, 27, 429-435.	0.6	102
44	Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology, 2000, 39, 110-122.	4.1	214
45	Chronic alnespirone-induced desensitization of somatodendritic 5-HT1A autoreceptors in the rat dorsal raphe nucleus. European Journal of Pharmacology, 1999, 365, 165-173.	3.5	14
46	Antibodies and Antisense Oligonucleotide for Probing the Distribution and Putative Functions of Central 5-HT6 Receptors. Neuropsychopharmacology, 1999, 21, 68S-76S.	5.4	150
47	5-HT1A autoreceptor desensitization by chronic ultramild stress in mice. NeuroReport, 1999, 10, 3369-3374.	1.2	95
48	Antagonist properties of (â^')-pindolol and WAY 100635 at somatodendritic and postsynaptic 5-HT1A receptors in the rat brain. British Journal of Pharmacology, 1998, 123, 449-462.	5.4	69
49	Effects of chronic diazepam treatment on pre- and postsynaptic 5-HT1A receptors in the rat brain. European Journal of Pharmacology, 1997, 323, 137-148.	3.5	5
50	Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Research, 1997, 746, 207-219.	2.2	309
51	Fluoxetine-induced desensitization of somatodendritic 5-HT1A autoreceptors is independent of glucocorticoid(s). Synapse, 1997, 27, 303-312.	1.2	22
52	Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 141-148.	3.0	226
53	Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behavioural Brain Research, 1995, 73, 337-353.	2.2	461