Sukyeong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11000183/publications.pdf

Version: 2024-02-01

		394421	361022
38	2,292	19	35
papers	citations	h-index	g-index
39	39	39	2103
	3)	37	2103
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Atomic Structure of the Leishmania spp . Hsp100 Nâ€Domain. Proteins: Structure, Function and Bioinformatics, 2022, , .	2.6	1
2	A biallelic pathogenic variant in the <scp><i>OGDH</i></scp> gene results in a neurological disorder with features of a mitochondrial disease. Journal of Inherited Metabolic Disease, 2021, 44, 388-400.	3.6	24
3	The Mitochondrial Protease LonP1 Promotes Proteasome Inhibitor Resistance in Multiple Myeloma. Cancers, 2021, 13, 843.	3.7	12
4	Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Medicine, 2021, 13, 55.	8.2	16
5	Macrocyclic Immunoproteasome Inhibitors as a Potential Therapy for Alzheimer's Disease. Journal of Medicinal Chemistry, 2021, 64, 10934-10950.	6.4	7
6	Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex. Nature Communications, 2021, 12, 281.	12.8	16
7	Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. American Journal of Human Genetics, 2021, 108, 2368-2384.	6.2	12
8	LMP2 Inhibitors as a Potential Treatment for Alzheimer's Disease. Journal of Medicinal Chemistry, 2020, 63, 3763-3783.	6.4	19
9	Crystal Structure of the YcjX Stress Protein Reveals a Ras-Like GTP-Binding Protein. Journal of Molecular Biology, 2019, 431, 3179-3190.	4.2	3
10	Development of Novel Epoxyketone-Based Proteasome Inhibitors as a Strategy To Overcome Cancer Resistance to Carfilzomib and Bortezomib. Journal of Medicinal Chemistry, 2019, 62, 4444-4455.	6.4	20
11	Cryo-EM Structures of the Hsp104 Protein Disaggregase Captured in the ATP Conformation. Cell Reports, 2019, 26, 29-36.e3.	6.4	36
12	Structural insights into the oligomerization of FtsH periplasmic domain from Thermotoga maritima. Biochemical and Biophysical Research Communications, 2018, 495, 1201-1207.	2.1	2
13	Overlapping and Specific Functions of the Hsp104 N Domain Define Its Role in Protein Disaggregation. Scientific Reports, 2017, 7, 11184.	3.3	15
14	Structural Elements Regulating AAA+ Protein Quality Control Machines. Frontiers in Molecular Biosciences, 2017, 4, 27.	3.5	13
15	Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase. Bioscience Reports, 2017, 37, .	2.4	15
16	2.4â€Ã resolution crystal structure of human TRAP1 _{NM} , the Hsp90 paralog in the mitochondrial matrix. Acta Crystallographica Section D: Structural Biology, 2016, 72, 904-911.	2.3	16
17	Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2952-2957.	7.1	42
18	Molecular chaperones: guardians of the proteome in normal and disease states. F1000Research, 2015, 4, 1448.	1.6	39

#	Article	lF	Citations
19	Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8513-8518.	7.1	101
20	Structural basis for intersubunit signaling in a protein disaggregating machine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12515-12520.	7.1	43
21	Functional analysis of conserved cis- and trans-elements in the Hsp104 protein disaggregating machine. Journal of Structural Biology, 2012, 179, 172-180.	2.8	18
22	Electron Cryomicroscopy Structure of a Membrane-anchored Mitochondrial AAA Protease. Journal of Biological Chemistry, 2011, 286, 4404-4411.	3.4	54
23	The Mâ€domain controls the Hsp104 protein disaggregating activity. FASEB Journal, 2011, 25, .	0.5	0
24	CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8135-8140.	7.1	82
25	An Intersubunit Signaling Network Coordinates ATP Hydrolysis by m-AAA Proteases. Molecular Cell, 2009, 35, 574-585.	9.7	96
26	Threeâ€dimensional Structure of a Prionâ€remodeling Machine. FASEB Journal, 2009, 23, 672.3.	0.5	0
27	M Domains Couple the ClpB Threading Motor with the DnaK Chaperone Activity. Molecular Cell, 2007, 25, 247-260.	9.7	153
28	Visualizing the ATPase Cycle in a Protein Disaggregating Machine: Structural Basis for Substrate Binding by ClpB. Molecular Cell, 2007, 25, 261-271.	9.7	112
29	Crystallization and preliminary X-ray crystallographic analysis of a 40 kDa N-terminal fragment of the yeast prion-remodeling factor Hsp104. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 784-786.	0.7	1
30	Molecular Chaperones in Protein Quality Control. BMB Reports, 2005, 38, 259-265.	2.4	42
31	Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell, 2004, 119, 653-665.	28.9	433
32	The ClpB/Hsp104 molecular chaperone—a protein disaggregating machine. Journal of Structural Biology, 2004, 146, 99-105.	2.8	91
33	Crystallization and preliminary X-ray crystallographic analysis of the Hsp100 chaperone ClpB fromThermus thermophilus. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2334-2336.	2.5	6
34	The Structure of ClpB. Cell, 2003, 115, 229-240.	28.9	422
35	Probing the potential glycoprotein binding site of sindbis virus capsid protein with dioxane and model building. Proteins: Structure, Function and Bioinformatics, 1998, 33, 311-317.	2.6	24
36	Structure of Semliki Forest virus core protein., 1997, 27, 345-359.		89

Sukyeong Lee

#	Article	IF	CITATIONS
37	Structural Analysis of Sindbis Virus Capsid Mutants Involving Assembly and Catalysis. Journal of Molecular Biology, 1996, 262, 151-167.	4.2	58
38	Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure, 1996, 4, 531-541.	3.3	159