
## Katerina Tsougeni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10998785/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | "Smart―polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling<br>and hydrophobic valving. Lab on A Chip, 2010, 10, 462-469.                                                                        | 6.0  | 164       |
| 2  | Controlling roughness: from etching to nanotexturing and plasma-directed organization on organic and inorganic materials. Journal Physics D: Applied Physics, 2011, 44, 174021.                                                            | 2.8  | 110       |
| 3  | Control of Nanotexture and Wetting Properties of Polydimethylsiloxane from Very Hydrophobic to Super-Hydrophobic by Plasma Processing. Plasma Processes and Polymers, 2007, 4, 398-405.                                                    | 3.0  | 96        |
| 4  | Controlled protein adsorption on microfluidic channels with engineered roughness and wettability.<br>Sensors and Actuators B: Chemical, 2012, 161, 216-222.                                                                                | 7.8  | 58        |
| 5  | Three-dimensional plasma micro–nanotextured cyclo-olefin-polymer surfaces for biomolecule<br>immobilization and environmentally stable superhydrophobic and superoleophobic behavior.<br>Chemical Engineering Journal, 2016, 300, 394-403. | 12.7 | 56        |
| 6  | Tailoring the surface topography and wetting properties of oxygen-plasma treated polydimethylsiloxane. Journal of Applied Physics, 2005, 98, 113502.                                                                                       | 2.5  | 51        |
| 7  | Nano-texturing of poly(methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption. Microelectronic Engineering, 2009, 86, 1424-1427.                                                   | 2.4  | 48        |
| 8  | Photosensitive poly(dimethylsiloxane) materials for microfluidic applications. Microelectronic<br>Engineering, 2007, 84, 1104-1108.                                                                                                        | 2.4  | 44        |
| 9  | Tunable Poly(dimethylsiloxane) Topography in O2or Ar Plasmas for Controlling Surface Wetting<br>Properties and Their Ageing. Japanese Journal of Applied Physics, 2007, 46, 744-750.                                                       | 1.5  | 39        |
| 10 | TiO2–ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation. Lab on A Chip, 2011, 11, 3113.                                                                                                         | 6.0  | 29        |
| 11 | Plasma micro-nanotextured polymeric micromixer for DNA purification with high efficiency and dynamic range. Analytica Chimica Acta, 2016, 942, 58-67.                                                                                      | 5.4  | 24        |
| 12 | Superhydrophobic, hierarchical, plasma-nanotextured polymeric microchannels sustaining high-pressure flows. Microfluidics and Nanofluidics, 2013, 14, 247-255.                                                                             | 2.2  | 16        |
| 13 | Flame aerosol deposition of TiO2 nanoparticle films on polymers and polymeric microfluidic devices for on-chip phosphopeptide enrichment. Microelectronic Engineering, 2012, 97, 341-344.                                                  | 2.4  | 14        |
| 14 | Three-dimensional (3D) plasma micro-nanotextured slides for high performance biomolecule<br>microarrays: Comparison with epoxy-silane coated glass slides. Colloids and Surfaces B:<br>Biointerfaces, 2018, 165, 270-277.                  | 5.0  | 13        |
| 15 | Oriented spontaneously formed nano-structures on poly(dimethylsiloxane) films and stamps treated in O2 plasmas. Microelectronic Engineering, 2008, 85, 1233-1236.                                                                          | 2.4  | 12        |
| 16 | Gradient-temperature hot-embossing for dense micropillar array fabrication on thick cyclo-olefin<br>polymeric plates: An example of a microfluidic chromatography column fabrication. Micro and Nano<br>Engineering, 2019, 5, 100042.      | 2.9  | 9         |
| 17 | Fluorescence Enhancement on Silver-Plated Plasma Micro-Nanostructured 3D Polymeric Microarray<br>Substrates for Multiplex Mycotoxin Detection. Processes, 2021, 9, 392.                                                                    | 2.8  | 7         |
| 18 | Binding kinetics of bacteria cells on immobilized antibodies in microfluidic channels: Modeling and experiments. Sensors and Actuators B: Chemical, 2017, 253, 247-257.                                                                    | 7.8  | 5         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | 3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and<br>Cell Patterning. Methods in Molecular Biology, 2018, 1771, 27-40. | 0.9 | 2         |