Pei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10998717/publications.pdf

Version: 2024-02-01

		567281 839539	
18	728	15	18
papers	citations	h-index	g-index
18	18	18	813
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of immobilization site on the orientation and activity of surface-tethered enzymes. Physical Chemistry Chemical Physics, 2018, 20, 1021-1029.	2.8	43
2	Effect of Lipid Composition on the Membrane Orientation of the G Protein-Coupled Receptor Kinase $2\hat{a}\in \hat{G}^2$ (\hat{G}^2 (\hat{G}^3 (\hat{G}^3) Complex. Biochemistry, 2016, 55, 2841-2848.	2.5	12
3	Low-Volatility Model Demonstrates Humidity Affects Environmental Toxin Deposition on Plastics at a Molecular Level. Environmental Science & Technology, 2016, 50, 1304-1312.	10.0	12
4	Immobilization of enzyme on a polymer surface. Surface Science, 2016, 648, 53-59.	1.9	13
5	Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides. Chemical Communications, 2015, 51, 16844-16847.	4.1	31
6	Molecular Interactions between Amantadine and Model Cell Membranes. Langmuir, 2014, 30, 8491-8499.	3.5	20
7	Investigation of Drug–Model Cell Membrane Interactions Using Sum Frequency Generation Vibrational Spectroscopy: A Case Study of Chlorpromazine. Journal of Physical Chemistry C, 2014, 118, 17538-17548.	3.1	24
8	Surface Orientation Control of Site-Specifically Immobilized Nitro-reductase (NfsB). Langmuir, 2014, 30, 5930-5938.	3.5	29
9	Molecular Orientation of Enzymes Attached to Surfaces through Defined Chemical Linkages at the Solid–Liquid Interface. Journal of the American Chemical Society, 2013, 135, 12660-12669.	13.7	73
10	Membrane Orientation of $G\hat{l}_{sub}(sub)\hat{l}_{sub$	> 13.7	43
11	Lipid Fluid–Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 17039-17049.	3.1	25
12	Dependence of Alamethicin Membrane Orientation on the Solution Concentration. Journal of Physical Chemistry C, 2013, 117, 3358-3365.	3.1	34
13	Membrane Orientation and Binding Determinants of G Protein-Coupled Receptor Kinase 5 as Assessed by Combined Vibrational Spectroscopic Studies. PLoS ONE, 2013, 8, e82072.	2.5	23
14	Observing a Model Ion Channel Gating Action in Model Cell Membranes in Real Time in Situ: Membrane Potential Change Induced Alamethicin Orientation Change. Journal of the American Chemical Society, 2012, 134, 6237-6243.	13.7	88
15	Membrane Orientation of MSI-78 Measured by Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2011, 27, 7760-7767.	3.5	78
16	Single Lipid Bilayers Constructed on Polymer Cushion Studied by Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 7613-7620.	3.1	39
17	Heterotrimeric G protein $\langle i \rangle \hat{l}^2 \langle i \rangle \langle sub \rangle 1 \langle sub \rangle \langle i \rangle \hat{l}^3 \langle i \rangle \langle sub \rangle 2 \langle sub \rangle subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E667-73.$	7.1	77
18	Limiting an Antimicrobial Peptide to the Lipidâ^'Water Interface Enhances Its Bacterial Membrane Selectivity: A Case Study of MSI-367. Biochemistry, 2010, 49, 10595-10605.	2.5	64