Xiaohui Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10994705/publications.pdf

Version: 2024-02-01

23	2,010	17 h-index	23
papers	citations		g-index
23	23	23	3358
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Copperâ€based materials derived from metalâ€organic frameworks for electrochemical sensing of hydrazine. Micro and Nano Letters, 2021, 16, 478-483.	1.3	4
2	Flammulina velutipes-like Co@NCNTs enhancing the electromagnetic wave absorption performance. Results in Physics, 2021, 29, 104751.	4.1	6
3	N,N-Dimethyl Formamide Regulating Fluorescence of MXene Quantum Dots for the Sensitive Determination of Fe3+. Nanoscale Research Letters, 2021, 16, 160.	5.7	14
4	Insights into the morphology and composition effects of one-dimensional CuPt nanostructures on the electrocatalytic activities and methanol oxidation mechanism by <i>in situ</i> FTIR. Nanoscale, 2020, 12, 13688-13696.	5.6	21
5	Nickel Catalysts Supported on Acetylene Black for High-Efficient Electrochemical Oxidation and Sensitive Detection of Glucose. Nanoscale Research Letters, 2020, 15, 23.	5.7	8
6	Balancing the Microâ€Mesoporosity for Activity Maximization of Nâ€Doped Carbonaceous Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2019, 12, 1017-1025.	6.8	53
7	Strong Electron Coupling from the Sub-Nanometer Pd Clusters Confined in Porous Ceria Nanorods for Highly Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 966-973.	5.1	39
8	Calixarene-Based $\{Ni < sub > 18 < sub > \}$ Coordination Wheel: Highly Efficient Electrocatalyst for the Glucose Oxidation and Template for the Homogenous Cluster Fabrication. Journal of the American Chemical Society, 2018, 140, 6271-6277.	13.7	94
9	Selfâ€Assembly of Ag ₆ Clusters into Nanowires for Nonenzymatic Electrochemical Sensing of Glucose. Particle and Particle Systems Characterization, 2018, 35, 1800040.	2.3	18
10	Epitaxial growth of zigzag PtAu alloy surface on Au nano-pentagrams with enhanced Pt utilization and electrocatalytic performance toward ethanol oxidation reaction. Electrochimica Acta, 2017, 238, 263-268.	5.2	39
11	Highly stable and efficient Pd ₆ (SR) ₁₂ cluster catalysts for the hydrogen and oxygen evolution reactions. Chemical Communications, 2017, 53, 9733-9736.	4.1	50
12	Copper Nanoclusters on Carbon Supports for the Electrochemical Oxidation and Detection of Hydrazine. ChemElectroChem, 2016, 3, 1266-1272.	3.4	27
13	Ultrafine Pt Nanoclusters Confined in a Calixarene-Based {Ni ₂₄ } Coordination Cage for High-Efficient Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 16236-16239.	13.7	172
14	Novel Pd ₁₃ Cu ₃ S ₇ nanotubes with high electrocatalytic activity towards both oxygen reduction and ethanol oxidation reactions. CrystEngComm, 2016, 18, 6055-6061.	2.6	14
15	Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1049-1061.	14.0	59
16	Single Crystal Subâ€Nanometer Sized Cu ₆ (SR) ₆ Clusters: Structure, Photophysical Properties, and Electrochemical Sensing. Advanced Science, 2016, 3, 1600126.	11.2	61
17	Highly Active and Durable PdAg@Pd Core–Shell Nanoparticles as Fuelâ€Cell Electrocatalysts for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2016, 33, 560-568.	2.3	22
18	Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 2016, 4, 6927-6945.	5.5	408

#	Article	IF	CITATIONS
19	One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag ⁺ based on the Ag ⁺ -induced enhancement of fluorescence. Journal of Materials Chemistry C, 2015, 3, 2302-2309.	5.5	291
20	Sub-nanometer sized Cu ₆ (GSH) ₃ clusters: one-step synthesis and electrochemical detection of glucose. Journal of Materials Chemistry C, 2015, 3, 4050-4056.	5 . 5	88
21	Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-l-cysteine-stabilized silver nanoparticles. Analytica Chimica Acta, 2015, 879, 118-125.	5 . 4	89
22	Charge state-dependent catalytic activity of [Au ₂₅) ₁₈] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chemical Communications, 2014, 50, 8464-8467.	4.1	119
23	Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2014, 136, 11687-11697.	13.7	314