
Tapaswy Muppaneni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10993679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recycle of nitrogen and phosphorus in hydrothermal liquefaction biochar from Galdieria sulphuraria to cultivate microalgae. Resources, Conservation and Recycling, 2021, 171, 105644.	10.8	19
2	Hydrothermal liquefaction of green microalga Kirchneriella sp. under sub- and super-critical water conditions. Biomass and Bioenergy, 2019, 120, 224-228.	5.7	41
3	Non-Conventional Feedstock and Technologies for Biodiesel Production. Advances in Chemical and Materials Engineering Book Series, 2018, , 96-118.	0.3	0
4	Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel, 2017, 195, 201-207.	6.4	66
5	1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters. Energy Conversion and Management, 2017, 132, 213-220.	9.2	35
6	Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Bioresource Technology, 2017, 236, 129-137.	9.6	54
7	Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Bioresource Technology, 2017, 223, 91-97.	9.6	89
8	Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp Applied Energy, 2016, 165, 943-951.	10.1	125
9	Single-step conversion of wet Nannochloropsis gaditana to biodiesel under subcritical methanol conditions. Fuel, 2015, 147, 253-259.	6.4	36
10	Transesterification of camelina sativa oil with supercritical alcohol mixtures. Energy Conversion and Management, 2015, 101, 402-409.	9.2	21
11	Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Research, 2015, 12, 74-79.	4.6	41
12	Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel, 2014, 115, 720-726.	6.4	151
13	A comparative study of direct transesterification of camelina oil under supercritical methanol, ethanol and 1-butanol conditions. Fuel, 2014, 135, 530-536.	6.4	24
14	Optimization of high-energy density biodiesel production from camelina sativa oil under supercritical 1-butanol conditions. Fuel, 2014, 135, 522-529.	6.4	30
15	Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions. Bioresource Technology, 2014, 170, 454-461.	9.6	70
16	Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel, 2014, 133, 73-81.	6.4	89
17	Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approach. Fuel, 2013, 107, 633-640.	6.4	68
18	Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions. Bioresource Technology, 2013, 137, 278-285.	9.6	42

#	Article	IF	CITATIONS
19	In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresource Technology, 2013, 139, 308-315.	9.6	79
20	ASI: Hydrothermal extraction and characterization of bioâ€crude oils from wet <i>chlorella sorokiniana</i> and <i>dunaliella tertiolecta</i> . Environmental Progress and Sustainable Energy, 2013, 32, 910-915.	2.3	34
21	Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chemistry, 2012, 14, 809.	9.0	64
22	Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent. Applied Energy, 2012, 94, 84-88.	10.1	68
23	Sub and Supercritical Fluid Technologies for the Production of Renewable (Bio) Transportation Fuels. , 0, , .		2