Peter Fekkes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10993495/publications.pdf

Version: 2024-02-01

		567281	996975
15	2,885	15	15
papers	citations	h-index	g-index
15	15	15	4103
all docs	docs citations	times ranked	citing authors
an does	does citations	tilles rankeu	citing authors

#	Article	IF	Citations
1	Identification of TNO155, an Allosteric SHP2 Inhibitor for the Treatment of Cancer. Journal of Medicinal Chemistry, 2020, 63, 13578-13594.	6.4	111
2	Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nature Communications, 2019, 10, 137.	12.8	65
3	The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Genes and Development, 2018, 32, 309-320.	5.9	89
4	H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nature Medicine, 2018, 24, 497-504.	30.7	391
5	Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A–SF3b complex. Nature Communications, 2017, 8, 15522.	12.8	113
6	Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 7773-7782.	6.4	229
7	Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535, 148-152.	27.8	674
8	Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3′ Splice Site Selection through Use of a Different Branch Point. Cell Reports, 2015, 13, 1033-1045.	6.4	377
9	Zinc Stabilizes the SecB Binding Site of SecA. Biochemistry, 1999, 38, 5111-5116.	2.5	77
10	Protein Targeting to the Bacterial Cytoplasmic Membrane. Microbiology and Molecular Biology Reviews, 1999, 63, 161-173.	6.6	222
11	Preprotein transfer to theEscherichia colitranslocase requires the coâ€operative binding of SecB and the signal sequence to SecA. Molecular Microbiology, 1998, 29, 1179-1190.	2.5	119
12	The Sec system. Current Opinion in Microbiology, 1998, 1, 216-222.	5.1	165
13	Domain Interactions of the Peripheral PreproteinTranslocaseSubunit SecAâ€. Biochemistry, 1996, 35, 11994-12004.	2.5	81
14	SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Molecular Microbiology, 1996, 22, 619-629.	2.5	97
15	Diffusion-Limited Interaction between Unfolded Polypeptides and the Escherichia coli Chaperone SecB. Biochemistry, 1995, 34, 10078-10085.	2.5	75