Thomas J Webster

List of Publications by Citations

Source: https://exaly.com/author-pdf/10993164/thomas-j-webster-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,778 138 314 74 h-index g-index citations papers 22,382 6.9 7.26 345 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
314	Nanotechnology and nanomaterials: Promises for improved tissue regeneration. <i>Nano Today</i> , 2009 , 4, 66-80	17.9	832
313	Osteoblast adhesion on nanophase ceramics. <i>Biomaterials</i> , 1999 , 20, 1221-7	15.6	800
312	Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. <i>Journal of Biomedical Materials Research Part B</i> , 2000 , 51, 475-83		784
311	Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. <i>Biomaterials</i> , 2004 , 25, 4731-9	15.6	664
310	The relationship between the nanostructure of titanium surfaces and bacterial attachment. <i>Biomaterials</i> , 2010 , 31, 706-13	15.6	495
309	Antimicrobial applications of nanotechnology: methods and literature. <i>International Journal of Nanomedicine</i> , 2012 , 7, 2767-81	7.3	451
308	Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. <i>Tissue Engineering</i> , 2001 , 7, 291-301		418
307	Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. <i>Biomaterials</i> , 2004 , 25, 53-61	15.6	377
306	Enhanced osteoclast-like cell functions on nanophase ceramics. <i>Biomaterials</i> , 2001 , 22, 1327-33	15.6	377
305	Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. <i>Biomaterials</i> , 2006 , 27, 2798-805	15.6	360
304	Carbon nanofibers and carbon nanotubes in regenerative medicine. <i>Advanced Drug Delivery Reviews</i> , 2009 , 61, 1097-114	18.5	355
303	Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. <i>Biomaterials</i> , 2004 , 25, 2111-21	15.6	337
302	The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. <i>Biomaterials</i> , 2008 , 29, 970-83	15.6	334
301	Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. <i>Journal of Orthopaedic Research</i> , 2018 , 36, 22-32	3.8	333
300	Selective bone cell adhesion on formulations containing carbon nanofibers. <i>Biomaterials</i> , 2003 , 24, 187	7 -1857 6	331
299	Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 78, 595-604	5.4	310
298	Enhanced functions of osteoblasts on nanometer diameter carbon fibers. <i>Biomaterials</i> , 2002 , 23, 3279-	87 5.6	309

(2011-2010)

297	Magnetic nanoparticles: biomedical applications and challenges. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8760		284	
296	Nanobiomaterial applications in orthopedics. <i>Journal of Orthopaedic Research</i> , 2007 , 25, 11-22	3.8	278	
295	Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants <i>Nanotechnology</i> , 2004 , 15,	3.4	276	•
294	Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 59, 312-7		224	
293	Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. <i>Tissue Engineering</i> , 2002 , 8, 753-61		223	
292	Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. Journal of Biomedical Materials Research Part B, 2004 , 70, 129-38		220	
291	Nano-structured polymers enhance bladder smooth muscle cell function. <i>Biomaterials</i> , 2003 , 24, 2915-2	6 15.6	220	
29 0	Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. <i>Acta Biomaterialia</i> , 2008 , 4, 192-201	10.8	214	
289	Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. <i>Biomaterials</i> , 2007 , 28, 4756-68	15.6	212	
288	Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. <i>International Journal of Nanomedicine</i> , 2010 , 5, 277-83	7.3	208	
287	Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. <i>Biomaterials</i> , 2005 , 26, 2491-500	15.6	201	
286	Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. <i>Biomaterials</i> , 2005 , 26, 3075-82	15.6	198	
285	Decreased functions of astrocytes on carbon nanofiber materials. <i>Biomaterials</i> , 2004 , 25, 1309-17	15.6	192	
284	Nanoparticles in tissue engineering: applications, challenges and prospects. <i>International Journal of Nanomedicine</i> , 2018 , 13, 5637-5655	7.3	188	
283	Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. <i>Nanotechnology</i> , 2005 , 16, 1828-1835	3.4	182	
282	Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. Journal of Biomedical Materials Research - Part A, 2003 , 67, 1374-83	5.4	172	
281	The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. <i>Biomaterials</i> , 2015 , 73, 185-97	15.6	167	
280	Diameter of titanium nanotubes influences anti-bacterial efficacy. <i>Nanotechnology</i> , 2011 , 22, 295102	3.4	167	

279	Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. <i>Acta Biomaterialia</i> , 2011 , 7, 3101-12	10.8	164
278	Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 59, 305-11		157
277	An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. <i>Acta Biomaterialia</i> , 2008 , 4, 1472-9	10.8	156
276	Enhanced osteoblast functions on anodized titanium with nanotube-like structures. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 85, 157-66	5.4	153
275	TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 84, 447-53	5.4	149
274	Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. <i>Biomaterials</i> , 2004 , 25, 4175-83	15.6	147
273	Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. <i>Expert Review of Medical Devices</i> , 2004 , 1, 105-14	3.5	125
272	Increased osteoblast functions on theta + delta nanofiber alumina. <i>Biomaterials</i> , 2005 , 26, 953-60	15.6	123
271	Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. <i>Biomaterials</i> , 2009 , 30, 1309-20	15.6	118
270	Anodized Ti and Ti6Al4V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion. Journal of Biomedical Nanotechnology, 2005 , 1, 68-73	4	118
269	Reducing infections through nanotechnology and nanoparticles. <i>International Journal of Nanomedicine</i> , 2011 , 6, 1463-73	7.3	116
268	Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. <i>International Journal of Nanomedicine</i> , 2017 , 12, 73-86	7-3	113
267	Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. <i>Journal of Biomedical Materials Research - Part A</i> , 2003 , 67, 1284-93	5.4	112
266	Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. <i>International Journal of Nanomedicine</i> , 2020 , 15, 275-300	7.3	111
265	A perspective on nanophase materials for orthopedic implant applications. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3737		109
264	Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. <i>Acta Biomaterialia</i> , 2016 , 46, 256-265	10.8	108
263	Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. <i>Acta Biomaterialia</i> , 2011 , 7, 1298-306	10.8	104
262	Design and evaluation of nanophase alumina for orthopaedic/dental applications. <i>Scripta Materialia</i> , 1999 , 12, 983-986		103

(2005-2004)

261	Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. <i>Biomaterials</i> , 2004 , 25, 2095-103	15.6	100
260	Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. <i>Biomaterials</i> , 2005 , 26, 1349-	- 57 .6	99
259	Nanotechnology for bone materials. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2009 , 1, 336-51	9.2	98
258	Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 78, 798-807	5.4	94
257	Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 67, 975-80		94
256	Nanotechnology for regenerative medicine. <i>Biomedical Microdevices</i> , 2010 , 12, 575-87	3.7	93
255	Nanotechnology and biomaterials for orthopedic medical applications. <i>Nanomedicine</i> , 2006 , 1, 169-76	5.6	93
254	Increased osteoblast function on PLGA composites containing nanophase titania. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 74, 677-86	5.4	92
253	Elastic liposomes as novel carriers: recent advances in drug delivery. <i>International Journal of Nanomedicine</i> , 2017 , 12, 5087-5108	7.3	91
252	An overview of nano-polymers for orthopedic applications. <i>Macromolecular Bioscience</i> , 2007 , 7, 635-42	5.5	91
251	Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. <i>Acta Biomaterialia</i> , 2011 , 7, 3003-12	10.8	90
250	Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. <i>International Journal of Nanomedicine</i> , 2008 , 3, 229-41	7.3	87
249	Nanoceramic surface roughness enhances osteoblast and osteoclast functions for improved orthopaedic/dental implant efficacy. <i>Scripta Materialia</i> , 2001 , 44, 1639-1642	5.6	83
248	Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. <i>Acta Biomaterialia</i> , 2011 , 7, 2337-44	10.8	82
247	Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. <i>Acta Biomaterialia</i> , 2010 , 6, 2352-62	10.8	79
246	Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800103	10.1	78
245	Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. <i>Nanotechnology</i> , 2008 , 19, 265101	3.4	77
244	Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 73, 476-84	5.4	77

243	pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. <i>Scientific Reports</i> , 2017 , 7, 45859	4.9	75	
242	Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites. <i>Biomaterials</i> , 2004 , 25, 1205-13	15.6	75	
241	Decreased bacteria activity on SiNG:urfaces compared with PEEK or titanium. <i>International Journal of Nanomedicine</i> , 2012 , 7, 4829-40	7.3	74	
240	Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. <i>International Journal of Nanomedicine</i> , 2014 , 9, 3801-14	7.3	71	
239	Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. <i>Tissue Engineering</i> , 2007 , 13, 1421-30		71	
238	Opportunities for nanotechnology-enabled bioactive bone implants. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2653		70	
237	Nanotechnology controlled drug delivery for treating bone diseases. <i>Expert Opinion on Drug Delivery</i> , 2009 , 6, 851-64	8	69	
236	Atomic layer deposition of nano-TiO thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. <i>International Journal of Nanomedicine</i> , 2017 , 12, 8711-8723	7.3	68	
235	Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. <i>Nanotechnology</i> , 2012 , 23, 495101	3.4	68	
234	Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. <i>Nanotechnology</i> , 2009 , 20, 175101	3.4	67	
233	Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. <i>Tissue Engineering - Part A</i> , 2008 , 14, 1353-64	3.9	66	
232	Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. <i>Nanotechnology</i> , 2007 , 18, 365102	3.4	65	
231	A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. <i>International Journal of Nanomedicine</i> , 2013 , 8, 47-59	7.3	64	
230	Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 86, 253-60	5.4	64	
229	Helical rosette nanotubes: a biomimetic coating for orthopedics?. <i>Biomaterials</i> , 2005 , 26, 7304-9	15.6	64	
228	The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. <i>International Journal of Nanomedicine</i> , 2009 , 4, 145-52	7.3	63	
227	Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. <i>International Journal of Nanomedicine</i> , 2010 , 5, 299-313	7.3	62	
226	Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. <i>International Journal of Nanomedicine</i> , 2017 , 12, 22	20 5 -3221	3 ⁶¹	

(2015-2001)

225	Nanophase ceramics: The future orthopedic and dental implant material. <i>Advances in Chemical Engineering</i> , 2001 , 27, 125-166	0.6	59
224	Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns. International Journal of Nanomedicine, 2006, 1, 65-72	7.3	59
223	Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films. <i>Nanotechnology</i> , 2009 , 20, 305102	3.4	58
222	PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 81, 678-84	5.4	58
221	Osteoblast and Chrondrocyte Proliferation in the Presence of Alumina And Titania Nanoparticles. Journal of Nanoparticle Research, 2002 , 4, 231-238	2.3	58
220	Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 123-142	6	56
219	Effects of different sterilization techniques and varying anodized TiOIhanotube dimensions on bacteria growth. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 677-8	8 ^{.5}	56
218	Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 91, 548-56	5.4	56
217	Increased functions of osteoblasts on nanophase metals. <i>Materials Science and Engineering C</i> , 2007 , 27, 575-578	8.3	56
216	Carbon nanostructures for orthopedic medical applications. <i>Nanomedicine</i> , 2011 , 6, 1231-44	5.6	53
215	Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. <i>International Journal of Nanomedicine</i> , 2011 , 6, 1765-71	7.3	53
214	Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. <i>Nanoscale</i> , 2016 , 8, 15783-94	7.7	53
213	Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 109	5 ⁵ 102	52
212	Increased chondrocyte adhesion on nanotubular anodized titanium. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 88, 561-8	5.4	52
211	Increased osteoblast functions in the presence of BMP-7 short peptides for nanostructured biomaterial applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 91, 296-304	5.4	52
210	Nanostructured biomaterials for tissue engineering bone. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2007 , 103, 275-308	1.7	52
209	Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites. <i>Nanotechnology</i> , 2005 , 16, S601-8	3.4	52
208	The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. <i>International Journal of Nanomedicine</i> , 2015 , 10, 3269-74	7.3	51

207	Improved osteoblast viability in the presence of smaller nanometre dimensioned carbon fibres. <i>Nanotechnology</i> , 2004 , 15, 892-900	3.4	50
206	Electrically active nanomaterials as improved neural tissue regeneration scaffolds. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology,</i> 2010 , 2, 635-47	9.2	49
205	Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 990-7	5.4	48
204	Better osteoblast adhesion on nanoparticulate selenium- A promising orthopedic implant material. Journal of Biomedical Materials Research - Part A, 2005, 75, 356-64	5.4	48
203	Nanobiomaterials: State of the Art and Future Trends. Advanced Engineering Materials, 2011, 13, B197	-B 3 .1 5 7	47
202	Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. <i>International Journal of Nanomedicine</i> , 2008 , 3, 323-33	7.3	47
201	Nanotechnology and Nanomaterials for Improving Neural Interfaces. <i>Advanced Functional Materials</i> , 2018 , 28, 1700905	15.6	45
200	A Status Report on FDA Approval of Medical Devices Containing Nanostructured Materials. <i>Trends in Biotechnology</i> , 2019 , 37, 117-120	15.1	45
199	Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. <i>International Journal of Nanomedicine</i> , 2014 , 9, 549-57	7.3	45
198	Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. <i>International Journal of Nanomedicine</i> , 2012 , 7, 5653-69	7.3	45
197	Increased osteoblast adhesion on nanograined Ti modified with KRSR. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 602-11	5.4	45
196	Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo. <i>International Journal of Nanomedicine</i> , 2006 , 1, 41-9	7.3	45
195	Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion. <i>Nanotechnology</i> , 2008 , 19, 505103	3.4	42
194	Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. <i>International Journal of Nanomedicine</i> , 2006 , 1, 339-49	7.3	42
193	Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. <i>International Journal of Nanomedicine</i> , 2010 , 5, 351-8	7.3	41
192	Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 88, 419-26	5.4	39
191	Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. <i>International Journal of Nanomedicine</i> , 2010 , 5, 647-52	7.3	38
190	Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents. <i>Nanoscale</i> , 2015 , 7, 8416-27	7.7	37

(2016-2009)

189	The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation. <i>Nanotechnology</i> , 2009 , 20, 085104	3.4	37	
188	The role of nanomedicine in growing tissues. <i>Annals of Biomedical Engineering</i> , 2009 , 37, 2034-47	4.7	36	
187	Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites. <i>International Journal of Nanomedicine</i> , 2008 , 3, 523-31	7.3	36	
186	Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications. <i>Biotechnology and Bioengineering</i> , 2009 , 103, 459-71	4.9	35	
185	Decreased platelet adhesion and enhanced endothelial cell functions on nano and submicron-rough titanium stents. <i>Tissue Engineering - Part A</i> , 2012 , 18, 1389-98	3.9	34	
184	Tuning cell adhesion on titanium with osteogenic rosette nanotubes. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 550-63	5.4	34	
183	Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings. <i>Nanoscale Research Letters</i> , 2007 , 2, 385-390	5	33	
182	A review of using green chemistry methods for biomaterials in tissue engineering. <i>International Journal of Nanomedicine</i> , 2018 , 13, 5953-5969	7.3	33	
181	Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. <i>International Journal of Nanomedicine</i> , 2012 , 7, 2751-65	7.3	32	
180	Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: From 2D to 3D printed structures. <i>Materials Science and Engineering C</i> , 2011 , 31, 77-89	8.3	32	
179	Influence of nanophase titania topography on bacterial attachment and metabolism. <i>International Journal of Nanomedicine</i> , 2008 , 3, 497-504	7.3	32	
178	Nanofunctionalized zirconia and barium sulfate particles as bone cement additives. <i>International Journal of Nanomedicine</i> , 2010 , 5, 1-11	7.3	32	
177	Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. <i>International Journal of Nanomedicine</i> , 2008 , 3, 391-6	7.3	31	
176	Evaluating the in vitro and in vivo efficacy of nano-structured polymers for bladder tissue replacement applications. <i>Macromolecular Bioscience</i> , 2007 , 7, 690-700	5.5	31	
175	Nanostructured metal coatings on polymers increase osteoblast attachment. <i>International Journal of Nanomedicine</i> , 2007 , 2, 487-92	7.3	31	
174	Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. Journal of Biomedical Materials Research - Part A, 2010 , 93, 1417-28	5.4	30	
173	Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. <i>International Journal of Nanomedicine</i> , 2008 , 3, 75-82	7.3	30	
172	Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood-brain barrier model. <i>International Journal of Nanomedicine</i> , 2016 , 11, 5371-5379	7.3	30	

171	Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO surface treatment. <i>International Journal of Nanomedicine</i> , 2017 , 12, 363-369	7.3	29
170	Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. <i>Acta Biomaterialia</i> , 2009 , 5, 1425-32	10.8	29
169	Decreased fibroblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds. <i>International Journal of Nanomedicine</i> , 2007 , 2, 383-8	7.3	29
168	Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications. <i>International Journal of Nanomedicine</i> , 2007 , 2, 493-9	7.3	29
167	The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. <i>International Journal of Nanomedicine</i> , 2016 , 11, 1475-82	7.3	29
166	Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 24, 102143	6	28
165	Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting. <i>International Journal of Nanomedicine</i> , 2016 , 11, 3305-15	7.3	27
164	Short communication: Carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. <i>International Journal of Nanomedicine</i> , 2013 , 8, 731-6	7.3	26
163	Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 129-36	5.4	26
162	Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 78, 500-7	5.4	26
161	Nanotechnology and picotechnology 2019 , 191-212		25
160	Altering surface energy of nanocrystalline diamond to control osteoblast responses. <i>Journal of Materials Chemistry</i> , 2012 , 22, 205-214		25
159	Understanding osteoblast responses to stiff nanotopographies through experiments and computational simulations. <i>Journal of Biomedical Materials Research - Part A</i> , 2011 , 97, 375-82	5.4	24
158	Antibacterial properties of PEKK for orthopedic applications. <i>International Journal of Nanomedicine</i> , 2017 , 12, 6471-6476	7.3	23
157	Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. <i>Nanoscale</i> , 2014 , 6, 825-32	7.7	23
156	Novel kojic acid-polymer-based magnetic nanocomposites for medical applications. <i>International Journal of Nanomedicine</i> , 2014 , 9, 351-62	7.3	23
155	Synthesis and microstructural characterization of nano-size calcium phosphates with different stoichiometry. <i>Ceramics International</i> , 2011 , 37, 971-977	5.1	23
154	Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. Journal of Biomedical Materials Research - Part A, 2010, 93, 1180-92	5.4	23

153	Control of macrophage responses on hydrophobic and hydrophilic carbon nanostructures. <i>Carbon</i> , 2011 , 49, 2092-2103	10.4	23	
152	Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy. <i>International Journal of Nanomedicine</i> , 2016 , 11, 4735-4741	7.3	23	
151	Lubricin: a novel means to decrease bacterial adhesion and proliferation. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 451-62	5.4	22	
150	Greater osteoblast long-term functions on ionic plasma deposited nanostructured orthopedic implant coatings. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 78-83	5.4	22	
149	Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane. <i>International Journal of Nanomedicine</i> , 2006 , 1, 361-5	7.3	21	
148	Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base. <i>International Journal of Nanomedicine</i> , 2016 , 11, 3875-90	7.3	21	
147	Novel nano-rough polymers for cartilage tissue engineering. <i>International Journal of Nanomedicine</i> , 2014 , 9, 1845-53	7.3	20	
146	Fructose-enhanced reduction of bacterial growth on nanorough surfaces. <i>International Journal of Nanomedicine</i> , 2012 , 7, 537-45	7.3	20	
145	Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. <i>International Journal of Nanomedicine</i> , 2013 , 8, 109-17	7.3	20	
144	The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. <i>International Journal of Nanomedicine</i> , 2009 , 145	7.3	20	
143	Influence of biologically inspired nanometer surface roughness on antigen-antibody interactions for immunoassay-biosensor applications. <i>International Journal of Nanomedicine</i> , 2006 , 1, 497-505	7.3	20	
142	Atomic Layer Deposition Coating of TiO Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents. <i>International Journal of Nanomedicine</i> , 2019 , 14, 9955-9970	7.3	20	
141	Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites. <i>International Journal of Nanomedicine</i> , 2013 , 8, 1177-84	7.3	19	
140	Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. <i>International Journal of Nanomedicine</i> , 2013 , 8, 3285-96	7-3	19	
139	Comparison of quantification methods illustrates reduced Pseudomonas aeruginosa activity on nanorough polyvinyl chloride. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2011 , 98, 1-7	3.5	19	
138	Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design. <i>Expert Review of Medical Devices</i> , 2004 , 1, 259-68	3.5	19	
137	Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres. <i>International Journal of Nanomedicine</i> , 2015 , 10, 3351-65	<u>-</u> 57.3	18	
136	Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone. <i>International Journal of Nanomedicine</i> , 2014 , 9, 5627-37	7.3	18	

135	Decreased bacteria density on nanostructured polyurethane. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 1823-8	5.4	18
134	Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation. <i>International Journal of Nanomedicine</i> , 2013 , 8, 2001-9	7.3	18
133	Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels. <i>International Journal of Nanomedicine</i> , 2015 , 10, 2885-94	7.3	17
132	Nanostructured titanium promotes keratinocyte density. <i>Journal of Biomedical Materials Research - Part A</i> , 2011 , 97, 59-65	5.4	17
131	The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth. <i>International Journal of Nanomedicine</i> , 2016 , 11, 3641-54	7.3	17
130	Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. <i>International Journal of Nanomedicine</i> , 2016 , 11, 977-90	7.3	17
129	Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. <i>International Journal of Nanomedicine</i> , 2016 , 11, 2569-85	7.3	17
128	Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation. <i>International Journal of Nanomedicine</i> , 2017 , 12, 1161-1169	7.3	16
127	Nano-BaSO4: a novel antimicrobial additive to pellethane. <i>International Journal of Nanomedicine</i> , 2013 , 8, 1197-205	7.3	16
126	Designing orthopedic implant surfaces: harmonization of nanotopographical and chemical aspects. <i>Nanomedicine</i> , 2006 , 1, 351-4	5.6	16
125	Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces. <i>IEEE Transactions on Nanobioscience</i> , 2002 , 1, 61-6	3.4	16
124	The era of biofunctional biomaterials in orthopedics: what does the future hold?. Expert Review of Medical Devices, 2018, 15, 193-204	3.5	15
123	Understanding improved osteoblast behavior on select nanoporous anodic alumina. <i>International Journal of Nanomedicine</i> , 2014 , 9, 3325-34	7.3	15
122	Nanostructured bladder tissue replacements. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2011 , 3, 134-145	9.2	15
121	Nanostructured magnesium increases bone cell density. <i>Nanotechnology</i> , 2012 , 23, 485105	3.4	15
120	Adhesion of Pseudomonas fluorescens onto nanophase materials. <i>Nanotechnology</i> , 2005 , 16, S449-57	3.4	15
119	Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites. <i>International Journal of Nanomedicine</i> , 2016 , 11, 3225-37	7.3	14
118	Recent insights on nanomedicine for augmented infection control. <i>International Journal of Nanomedicine</i> , 2019 , 14, 2301-2325	7.3	13

117	Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds. <i>International Journal of Nanomedicine</i> , 2011 , 6, 1095-9	7.3	13	
116	Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2019 , 17, 36-46	6	13	
115	Greater endothelial cell responses on submicron and nanometer rough titanium surfaces. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 1042-9	5.4	12	
114	Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation. <i>International Journal of Nanomedicine</i> , 2016 , 11, 1427-33	7.3	12	
113	Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease. <i>International Journal of Nanomedicine</i> , 2016 , 11, 259-67	7.3	12	
112	Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile Deinococcus radiodurans for Multifunctional Applications. <i>Small</i> , 2019 , 15, e1900600	11	11	
111	Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery. <i>International Journal of Nanomedicine</i> , 2017 , 12, 7963-7977	7.3	11	
110	Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals. <i>International Journal of Nanomedicine</i> , 2014 , 9, 1775-81	7.3	11	
109	Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. <i>Tissue Engineering - Part A</i> , 2011 , 17, 1879-89	3.9	11	
108	How can 3D printing be a powerful tool in nanomedicine?. <i>Nanomedicine</i> , 2018 , 13, 251-253	5.6	10	
107	Greater fibroblast proliferation on an ultrasonicated ZnO/PVC nanocomposite material. <i>International Journal of Nanomedicine</i> , 2014 , 9, 257-63	7.3	10	
106	Increased healthy osteoblast to osteosarcoma density ratios on specific PLGA nanopatterns. <i>International Journal of Nanomedicine</i> , 2013 , 8, 159-66	7.3	10	
105	A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media. <i>International Journal of Nanomedicine</i> , 2016 , 11, 1089-95	7.3	10	
104	Stability, safety, and transcorneal mechanistic studies of ophthalmic lyophilized cyclosporine-loaded polymeric micelles. <i>International Journal of Nanomedicine</i> , 2018 , 13, 8281-8296	7:3	10	
103	Increased viability of fibroblasts when pretreated with ceria nanoparticles during serum deprivation. <i>International Journal of Nanomedicine</i> , 2018 , 13, 895-901	7.3	10	
102	Enhancing Stent Effectiveness with Nanofeatures. <i>Methodist DeBakey Cardiovascular Journal</i> , 2016 , 12, 163-168	2.1	9	
101	Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites. <i>Drug Design, Development and Therapy</i> , 2014 , 8, 1029-36	4.4	9	
100	An understanding of enhanced osteoblast adhesion on various nanostructured polymeric and metallic materials prepared by ionic plasma deposition. <i>Journal of Biomedical Materials Research</i> -	5.4	9	

99	Select bladder smooth muscle cell functions were enhanced on three-dimensional, nano-structured poly(ether urethane) scaffolds. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2006 , 17, 1317-32	3.5	9
98	Surface energy-mediated fibronectin adsorption and osteoblast responses on nanostructured diamond. <i>Journal of Materials Science and Technology</i> , 2019 , 35, 817-823	9.1	9
97	Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis. <i>International Journal of Nanomedicine</i> , 2017 , 12, 3605-3616	7.3	8
96	Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 3757-63	5.4	8
95	Cytotoxicity and physicochemical characterization of iron-manganese-doped sulfated zirconia nanoparticles. <i>International Journal of Nanomedicine</i> , 2015 , 10, 5739-50	7.3	8
94	Today's diverse nano-theranostic applications and tomorrow's promises. <i>International Journal of Nanomedicine</i> , 2015 , 10, 1-2	7.3	8
93	Lubricin as a novel nanostructured protein coating to reduce fibroblast density. <i>International Journal of Nanomedicine</i> , 2014 , 9, 3131-5	7.3	8
92	Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. <i>International Journal of Nanomedicine</i> , 2014 , 9, 5533-9	7-3	8
91	Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study. <i>Journal of Biomedical Materials Research - Part A</i> , 2011 , 98, 192-200	5.4	8
90	Reduced activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles 2009 ,		8
89	Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 4598-608	5.4	7
88	Microstructural, mechanical, and osteocompatibility properties of Mg2+/F(-)-doped nanophase hydroxyapatite. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 806-15	5.4	7
87	Nanotechnology: Better Materials for All Implants. <i>Materials Science Forum</i> , 2007 , 539-543, 511-516	0.4	7
86	Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features. <i>International Journal of Nanomedicine</i> , 2017 , 12, 2109-2115	7-3	6
85	Bioinspired Nanocomposites for Orthopedic Applications 2007, 1-51		6
84	Small Diameter, High Surface Energy Carbon Nanofiber Formulations that Selectively Increase Osteoblast function. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 711, 1		6
83	Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption. <i>International Journal of Nanomedicine</i> , 2016 , 11, 3969-78	7.3	6
82	Better Tissue Engineering Materials through the Use of Nanotechnology. <i>Advances in Science and Technology</i> , 2006 , 53, 58-66	0.1	5

(2013-2021)

81	Biological Applications of Severely Plastically Deformed Nano-Grained Medical Devices: A Review. <i>Nanomaterials</i> , 2021 , 11,	5.4	5
80	Increased NIH 3T3 fibroblast functions on cell culture dishes which mimic the nanometer fibers of natural tissues. <i>International Journal of Nanomedicine</i> , 2015 , 10, 5293-9	7.3	4
79	Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering. <i>International Journal of Nanomedicine</i> , 2016 , 11, 45-52	7.3	4
78	Gene expression in osteoblast cells treated with submicron to nanometer hydroxyapatite-mullite eluate particles. <i>Journal of Biomaterials Applications</i> , 2013 , 27, 891-908	2.9	4
77	Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices. <i>International Journal of Nanomedicine</i> , 2013 , 8 Suppl 1, 75-81	7.3	4
76	Nanomaterials for Improved Orthopedic and Bone Tissue Engineering Applications 2010 , 205-241		4
75	Novel Anti-Cancer, Anti-Bacterial Coatings for Biomaterial Applications: Selenium Nanoclusters. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1209, 1		4
74	Developing Biosensors for Monitoring Orthopedic Tissue Growth. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 950, 1		4
73	Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes. <i>International Journal of Nanomedicine</i> , 2016 , 11, 479-83	7.3	4
72	Personalized nanomedicine: a rapid, sensitive, and selective UV-vis spectrophotometry method for the quantification of nanostructured PEG-asparaginase activity in children's plasma. <i>International Journal of Nanomedicine</i> , 2018 , 13, 6337-6344	7.3	4
71	Monitoring Tissue Healing Through Nanosensors 2011 , 41-59		4
70	Transparent Nano Thin -Film Transistors for Medical Sensors, OLED and Display Applications. <i>International Journal of Nanomedicine</i> , 2020 , 15, 3597-3603	7.3	3
69	Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density. <i>International Journal of Nanomedicine</i> , 2015 , 10, 527-35	7.3	3
68	Advances in calcium phosphate coatingsanodic spark deposition: a review. <i>Frontiers in Bioscience - Landmark</i> , 2014 , 19, 475-89	2.8	3
67	Fructose Enhanced Reduction of Bacterial Growth on Nanorough Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1498, 73-78		3
66	Effect of Precursor Deficiency Induced Ca/P Ratio on Antibacterial and Osteoblast Adhesion Properties of Ag-Incorporated Hydroxyapatite: Reducing Ag Toxicity. <i>Materials</i> , 2021 , 14,	3.5	3
65	Protein Interactions at Material Surfaces 2009 , 215-237		3
64	Nano-BaSO4: A Novel Bacteriostatic Polymer Additive 2013 ,		2

63	Zinc oxide nanoparticle and polymer antimicrobial biomaterial composites 2010,		2
62	Improved Cardiomyocyte Functions of Carbon Nanofiber Cardiac Patches. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1417, 87		2
61	Enhanced Vascular Endothelial Cell Function on Nanostructured Titanium Surface Features: The Role of Nano to Submicron Roughness. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1136, 40401		2
60	Effect of Metal Substrate Nanometer Topography on Osteoblast Metabolic Activities. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 823, W13.6.1		2
59	Advances in Translational Nanotechnology: Challenges and Opportunities. <i>Applied Sciences</i> (Switzerland), 2020 , 10, 4881	2.6	2
58	Improved Dispersion of Nanophase Titania in Plga Enhances Osteoblast Adhesion. <i>Ceramic Transactions</i> ,247-255	0.1	2
57	A hierarchical integration pyramid to increase translation of biomaterials based on recent successes in multiscale synthetic biomaterials research. <i>Current Opinion in Biomedical Engineering</i> , 2019 , 10, 89-96	4.4	1
56	Translational medicine and biomaterials 2019 , 1-22		1
55	Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies. <i>International Journal of Nanomedicine</i> , 2014 , 9 Suppl 1, 7-12	7.3	1
54	Biological Responses to and Toxicity of Nanoscale Implant Materials 2012 , 481-508		1
53	Decreased cervical cancer cell adhesion on nanotubular titanium for the treatment of cervical cancer. <i>International Journal of Nanomedicine</i> , 2013 , 8, 995-1001	7:3	1
52	Selenium Nanocluster Coatings: Transforming Current Orthopedic Materials into Inhibiting Bone Cancer. <i>Materials Science Forum</i> , 2010 , 638-642, 718-723	0.4	1
51	Decreased Attachment of Bacteria to Lubricin Coated Intraocular Lenses. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1316, 1		1
50	Orthopedic implants from bioactive rosette nanotubes/poly(2-hydroxyethyl methacrylate)/nano-hydroxyapatite composites. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1417, 99		1
49	Novel anti-cancer orthopedic materials: Nanostructured selenium 2007,		1
48	Endothelial Cell Adhesion on Highly Controllable Compared to Random Nanostructured Titanium Surface Features. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 951, 29		1
47	Ceramic/Polymer Nanocomposite Tissue Engineering Scaffolds for More Effective Orthopedic Applications: From 2D Surfaces to Novel 3D Architectures. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 950, 1		1
46	Development of Novel Nanostructured Tissue Engineering Scaffold Materials through Self-assembly for Bed-side Orthopedic Applications. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 950, 1		1

45	Encapsulation of Neural Cells in Nano-Featured Polymer Scaffolds through Coaxial Electrospinning. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1065, 1		1
44	Topographical Evolution of Nanocrystalline Diamond and Its Effect on Osteoblast Interactions. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1039, 1		1
43	Osteoblast Behaviors on Novel Self-assembled Helical Rosette Nanotubes and Hydrogel Composites for Bone Tissue Engineering. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1056, 1		1
42	Porous Materials for Biological Applications 2006 ,		1
41	Titanium Nanosurface Modification by Anodization for Orthopedic Applications. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 321		1
40	Directed Osteoblast Adhesion at Particle Boundaries: Promises for Nanophase Metals. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 823, W11.12.1		1
39	Increased, Directed Osteoblast Adhesion at Nanophase Ti and Ti6Al4V Particle Boundaries. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 806, 47		1
38	XanoMatrix surfaces as scaffolds for mesenchymal stem cell culture and growth. <i>International Journal of Nanomedicine</i> , 2016 , 11, 2655-61	7.3	1
37	Bioactive Rosette Nanotube Composites for Cartilage Applications. Ceramic Transactions, 63-69	0.1	1
36	Nanotechnology for Reducing Orthopedic Implant Infections: Synthesis, Characterization, and Properties 2017 , 31-62		Ο
35	Increased Osteoblast and Decreased Smooth Muscle Cell Adhesion on Biologically-inspired Carbon Nanofibers. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 676, 971		0
34	Development of a Novel Zinc Oxide/Polyvinyl Chloride Nanocomposite Material for Medical Implant Applications. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1626, 1		
33	Surface Energy-mediated Protein and Osteoblast Responses on Nanostructured Stiff Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1486, 10		
32	The Effect of Carbon Nanotube Surface Energy on the Adhesion of Macrophages. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1204, 1		
31	The Impact of Material Nanotopography on Cell Functions and Filopodia Extension: Experiments and Modeling. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1236, 1		
30	The Impact of Substrate Topography on Cell Filopodia Extension and Cell Spreading. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1209, 1		
29	Development of a dual growth factor loaded biodegradable hydrogel and its evaluation on osteoblast differentiation in vitro. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1312, 1		
28	Lubricin as a Novel Protein Coating to Prevent Bacterial Biofouling. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1417, 1		

27	Effects of PLGA Nano Patterns on the Responses of Healthy Osteoblasts. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1412, 32	
26	Lubricin as a Surface Treatment to Reduce Post-operative Biofouling and Infection. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1486, 16	
25	Nanostructured Selenium for Preventing Biofilm Formation on Medical Devices. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1415, 29	
24	Nanomodified Endotracheal Tubes: Spatial Analysis of Reduced Bacterial Colonization in a Bench Top Airway Model. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1418, 261	
23	Breast Adenocarcinoma Cell Functions on Nanopatterned PLGA Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1416, 67	
22	Transforming Orthopedic Biomaterials Into Bone Cancer Inhibiting Implants: The Role of Selenium Nanoclusters. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1136, 20501	
21	In vitro Evaluation of Macrophage Adhesion and Proliferation on Alumina. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 950, 1	
20	Decreased Macrophage Density on Carbon Nanofiber Patterns. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 950, 1	
19	Increased Osteoblast Adhesion on Nanograined Hydroxyapatite and Tricalcium Phosphate Calcium Titanate Composites. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 950, 1	
18	Nano-dispersed Particulate Ceramics in Poly-Lactide-Co-Glycolide Composites Improve Implantable Bone Substitute Properties. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1056, 1	
17	Anodization: A Promising Nano-modification Technique for Titanium for Orthopedic Applications 2007 , 79-110	
16	Enhanced Osteoblast Functions on Nanophase Titania in Poly-lactic-co-glycolic Add (PLGA) Composites. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 175	
15	More Efficient Capture of Bacteria on Nanostructured Materials. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 134	
14	Surface Roughness Values Closer to Bone for Titania Nanoparticle/Poly-lactic-co-glycolic Acid (PLGA) Composites Increases Bone Cell Adhesion. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 873, 1	
13	Solubility Properties of Hydroxyapatite Doped with Divalent and Trivalent Ions. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 735, 1171	
12	Bioactivity of Vitronectin Adsorbed on Nanophase Alumina Promotes Osteoblast Adhesion. Materials Research Society Symposia Proceedings, 2000 , 662, 1	
11	Nano-hydroxyapatite-thermally denatured small intestine sub-mucosa composites for entheses applications. <i>International Journal of Nanomedicine</i> , 2006 , 1, 351-9	
10	Cytocompatibility and Material Properties of Poly-carbonate Urethane/Carbon Nanofiber Composites for Neural Applications. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 774, 7301	

LIST OF PUBLICATIONS

9	Cytocompatibility of Carbon Nanofiber Materials for Neural Applications. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 774, 7351
8	Protein Interactions at Material Surfaces 2021 , 399-422
7	Self-Assembled Organic Nanotubes: Novel Bionanomaterials for Orthopedics and Tissue Engineering 2017 , 17-46
6	Nanophase Hydroxyapatite in Biodegradable Polymer Composites as Novel Drug-Carrying Implants for Treating Bone Diseases at Targeted Sites. <i>Ceramic Transactions</i> ,183-191
5	Electrically Active Neural Biomaterials 2011 , 95-114
4	Improved Bone Cell Adhesion on Ultrafine Grained Titanium and Ti-6A1-4V. <i>Ceramic Transactions</i> ,239-245.1
3	Increased Osteoblast Functions on Nanophase Hydroxyapatite Coatings on Titanium. <i>Ceramic Transactions</i> ,175-191

Bioactive Rosette Nanotubes for Bone Tissue Engineering and Drug Delivery313-357

Proteins: Structure and Interaction Patterns to Solid Surfaces **2014**, 3945-3960