Sam Toan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10992994/publications.pdf

Version: 2024-02-01

	186265	330143
2,863	28	37
citations	h-index	g-index
0.7	27	1010
3/	3/	1913
docs citations	times ranked	citing authors
	citations 37	2,863 28 citations h-index 37 37

#	Article	IF	CITATIONS
1	Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply. Green Energy and Environment, 2022, 7, 145-155.	8.7	18
2	Microchannel structure design for hydrogen supply from methanol steam reforming. Chemical Engineering Journal, 2022, 429, 132286.	12.7	43
3	DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction. Journal of Advanced Research, 2022, 41, 39-48.	9.5	25
4	Fabricating Ga doped and MgO embedded nanomaterials for sorption-enhanced steam reforming of methanol. Journal of Materials Chemistry A, 2022, 10, 7300-7313.	10.3	14
5	Deoxygenation-enhanced chemical looping gasification: a new pathway to produce hydrogen from biomass. Green Chemistry, 2022, 24, 2613-2623.	9.0	17
6	Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis, 2022, 25, 307-329.	7.2	44
7	DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury. Science Signaling, 2022, 15, eabh1121.	3.6	55
8	Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKI±1/ULK1/FUNDC1/mitophagy pathway. Redox Biology, 2022, 52, 102288.	9.0	68
9	Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. Journal of Environmental Management, 2022, 313, 115026.	7.8	47
10	Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiologica, 2021, 231, e13590.	3.8	89
11	Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biology, 2021, 38, 101777.	9.0	98
12	Ammonia production from biomass via a chemical looping–based hybrid system. Journal of Cleaner Production, 2021, 289, 125749.	9.3	32
13	Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Research Reviews, 2021, 66, 101250.	10.9	147
14	Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biology, 2021, 45, 102049.	9.0	122
15	Thermocatalytic formic acid dehydrogenation: recent advances and emerging trends. Journal of Materials Chemistry A, 2021, 9, 24241-24260.	10.3	39
16	DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Research in Cardiology, 2020, 115, 11.	5.9	106
17	SERCA Overexpression Improves Mitochondrial Quality Control and Attenuates Cardiac Microvascular Ischemia-Reperfusion Injury. Molecular Therapy - Nucleic Acids, 2020, 22, 696-707.	5.1	105
18	SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biology, 2020, 36, 101659.	9.0	38

#	Article	IF	CITATIONS
19	Chemical looping deoxygenated gasification: An implication for efficient biomass utilization with high-quality syngas modulation and CO2 reduction. Energy Conversion and Management, 2020, 215, 112913.	9.2	36
20	Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3. Biochemical Pharmacology, 2020, 174, 113832.	4.4	59
21	Pum2-Mff axis fine-tunes mitochondrial quality control in acute ischemic kidney injury. Cell Biology and Toxicology, 2020, 36, 365-378.	5.3	67
22	Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury. Biomolecules, 2020, 10, 85.	4.0	76
23	New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis, 2020, 23, 299-314.	7.2	210
24	Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. Pharmacological Research, 2020, 156, 104771.	7.1	131
25	Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging, 2020, 12, 6467-6485.	3.1	57
26	Thermodynamics of NaHCO3 decomposition during Na2CO3-based CO2 capture. Journal of Environmental Sciences, 2019, 78, 74-80.	6.1	15
27	Synergistic enhancement of chemical looping-based CO ₂ splitting with biomass cascade utilization using cyclic stabilized Ca ₂ Fe ₂ O ₅ aerogel. Journal of Materials Chemistry A, 2019, 7, 1216-1226.	10.3	43
28	DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduction and Targeted Therapy, 2019, 4, 56.	17.1	125
29	BI1 alleviates cardiac microvascular ischemiaâ€reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/Fâ€actin pathways. Journal of Cellular Physiology, 2019, 234, 5056-5069.	4.1	72
30	Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biology, 2018, 16, 157-168.	9.0	286
31	Green, safe, fast, and inexpensive removal of CO2 from aqueous KHCO3 solutions using a nanostructured catalyst TiO(OH)2: A milestone toward truly low-cost CO2 capture that can ease implementation of the Paris Agreement. Nano Energy, 2018, 53, 508-512.	16.0	15
32	Inhibitory effect of melatonin on necroptosis via repressing the Ripk3â€PGAM5â€CypDâ€mPTP pathway attenuates cardiac microvascular ischemia–reperfusion injury. Journal of Pineal Research, 2018, 65, e12503.	7.4	186
33	TiO(OH)2 – highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway. Scientific Reports, 2017, 7, 2943.	3.3	21
34	Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO2 capture. International Journal of Hydrogen Energy, 2017, 42, 16031-16044.	7.1	33
35	Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5. Energy Conversion and Management, 2017, 146, 182-194.	9.2	57