Robert E Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10992761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms. Remote Sensing of Environment, 2010, 114, 2897-2910.	11.0	1,229
2	Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites. Remote Sensing of Environment, 1999, 70, 52-68.	11.0	520
3	Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 2010, 114, 1053-1068.	11.0	412
4	Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment, 2007, 110, 370-386.	11.0	359
5	Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sensing, 2018, 10, 691.	4.0	306
6	Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 2009, 113, 1382-1396.	11.0	291
7	Bringing an ecological view of change to Landsatâ€based remote sensing. Frontiers in Ecology and the Environment, 2014, 12, 339-346.	4.0	285
8	Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sensing of Environment, 2012, 122, 117-133.	11.0	219
9	Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sensing of Environment, 2012, 122, 146-165.	11.0	201
10	Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment, 2018, 204, 717-728.	11.0	193
11	A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment, 2011, 115, 3707-3718.	11.0	189
12	Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004, 91, 508-520.	11.0	188
13	Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment, 2001, 76, 139-155.	11.0	176
14	Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sensing of Environment, 2014, 151, 124-137.	11.0	169
15	A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sensing of Environment, 2018, 205, 131-140.	11.0	164
16	Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere, 2017, 8, e01695.	2.2	150
17	United States Forest Disturbance Trends Observed Using Landsat Time Series. Ecosystems, 2013, 16, 1087-1104.	3.4	130
18	How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms?. Forests, 2017, 8, 98.	2.1	129

ROBERT E KENNEDY

#	Article	IF	CITATIONS
19	Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sensing of Environment, 2015, 166, 271-285.	11.0	126
20	Development of time series stacks of Landsat images for reconstructing forest disturbance history. International Journal of Digital Earth, 2009, 2, 195-218.	3.9	112
21	Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sensing of Environment, 2012, 118, 199-214.	11.0	112
22	Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecology, 2019, 15, .	3.0	102
23	Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sensing of Environment, 2013, 139, 277-290.	11.0	94
24	Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sensing of Environment, 2011, 115, 3539-3553.	11.0	75
25	Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region, USA. Forest Ecology and Management, 2015, 339, 71-86.	3.2	71
26	LAND USE AND LAND COVER CHANGE IN THE GREATER YELLOWSTONE ECOSYSTEM: 1975–1995. , 2003, 13, 687-703.		70
27	Do insect outbreaks reduce the severity of subsequent forest fires?. Environmental Research Letters, 2016, 11, 045008.	5.2	66
28	Title is missing!. Landscape Ecology, 2000, 15, 441-452.	4.2	62
29	Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sensing of Environment, 2014, 151, 114-123.	11.0	58
30	Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data. Remote Sensing of Environment, 2014, 154, 61-73.	11.0	50
31	Does wildfire likelihood increase following insect outbreaks in conifer forests?. Ecosphere, 2015, 6, 1-24.	2.2	50
32	An empirical, integrated forest biomass monitoring system. Environmental Research Letters, 2018, 13, 025004.	5.2	50
33	Decadal trends in net ecosystem production and net ecosystem carbon balance for a regional socioecological system. Forest Ecology and Management, 2011, 262, 1318-1325.	3.2	41
34	Mapping change of older forest with nearest-neighbor imputation and Landsat time-series. Forest Ecology and Management, 2012, 272, 13-25.	3.2	40
35	Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3421-3427.	4.9	38
36	A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA. Environmental Research Letters, 2020, 15, 095003.	5.2	32

Robert E Kennedy

#	Article	IF	CITATIONS
37	Landsat Time Series and Lidar as Predictors of Live and Dead Basal Area Across Five Bark Beetle-Affected Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3440-3452.	4.9	25
38	Towards a polyalgorithm for land use change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 217-234.	11.1	25
39	Observation of Trends in Biomass Loss as a Result of Disturbance in the Conterminous U.S.: 1986–2004. Ecosystems, 2014, 17, 142-157.	3.4	24
40	Assessing the Carbon Consequences of Western Juniper (Juniperus occidentalis) Encroachment Across Oregon, USA. Rangeland Ecology and Management, 2012, 65, 223-231.	2.3	18
41	Multiscale divergence between Landsat- and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance and Management, 2018, 13, 15.	3.2	18
42	Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance. Carbon Balance and Management, 2015, 10, 12.	3.2	17
43	Trends in Developed Land Cover Adjacent to Habitat for Threatened Salmon in Puget Sound, Washington, U.S.A PLoS ONE, 2015, 10, e0124415.	2.5	15
44	Regional dynamics of forest canopy change and underlying causal processes in the contiguous U.S Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1035-1053.	3.0	13
45	Demystifying LandTrendr and CCDC temporal segmentation. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102806.	1.9	13
46	Regional carbon cycle responses to 25Âyears of variation in climate and disturbance in the US Pacific Northwest. Regional Environmental Change, 2016, 16, 2345-2355.	2.9	10
47	A spatial ensemble approach for broad-area mapping of land surface properties. Remote Sensing of Environment, 2018, 210, 473-489.	11.0	9
48	Does conserving roadless wildland increase wildfire activity in western US national forests?. Environmental Research Letters, 2021, 16, 084040.	5.2	8
49	Predicting live and dead basal area from LandTrendr variables in beetle-affected forests. , 2013, , .		4
50	Penumbra: A spatially distributed, mechanistic model for simulating ground-level incident solar energy across heterogeneous landscapes. PLoS ONE, 2018, 13, e0206439.	2.5	4
51	Improved Soil Temperature Modeling Using Spatially Explicit Solar Energy Drivers. Water (Switzerland), 2018, 10, 1398.	2.7	3
52	Vegetation recovery rates provide insight into reburn severity in southwestern Oregon, USA. Forest Ecology and Management, 2022, 519, 120292.	3.2	3
53	New views on changing Arctic vegetation. Environmental Research Letters, 2012, 7, 011001.	5.2	0