
Yong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10992749/publications.pdf Version: 2024-02-01

YONG CHENC

#	Article	IF	CITATIONS
1	Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy, 2019, 57, 22-33.	16.0	279
2	Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Materials, 2019, 16, 632-645.	18.0	225
3	Rational Design of Nickel Hydroxideâ€Based Nanocrystals on Graphene for Ultrafast Energy Storage. Advanced Energy Materials, 2018, 8, 1702247.	19.5	211
4	Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chemical Engineering Journal, 2018, 347, 563-573.	12.7	179
5	Lithium Deficiencies Engineering in Li-Rich Layered Oxide Li _{1.098} Mn _{0.533} Ni _{0.113} Co _{0.138} O ₂ for High-Stability Cathode. Journal of the American Chemical Society, 2019, 141, 10876-10882.	13.7	171
6	Designing and Understanding the Superior Potassium Storage Performance of Nitrogen/Phosphorus Coâ€Doped Hollow Porous Bowlâ€Like Carbon Anodes. Advanced Functional Materials, 2021, 31, .	14.9	142
7	Fabrication and understanding of Cu ₃ Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale, 2018, 10, 22203-22214.	5.6	103
8	Pushing Lithium Cobalt Oxides to 4.7ÂV by Latticeâ€Matched Interfacial Engineering. Advanced Energy Materials, 2022, 12, .	19.5	77
9	In Situ Atomic‣cale Observation of Reversible Potassium Storage in Sb ₂ S ₃ @Carbon Nanowire Anodes. Advanced Functional Materials, 2020, 30, 2005417.	14.9	75
10	Synthesis of paracrystalline diamond. Nature, 2021, 599, 605-610.	27.8	70
11	Body entered Tetragonal C ₁₆ : A Novel Topological Nodeâ€Line Semimetallic Carbon Composed of Tetrarings. Small, 2017, 13, 1602894.	10.0	65
12	Stable Nanoâ€Encapsulation of Lithium Through Seedâ€Free Selective Deposition for Highâ€Performance Li Battery Anodes. Advanced Energy Materials, 2020, 10, 1902956.	19.5	65
13	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	14.2	64
14	Fast and Durable Potassium Storage Enabled by Constructing Stress-Dispersed Co ₃ Se ₄ Nanocrystallites Anchored on Graphene Sheets. ACS Nano, 2021, 15, 10107-10118.	14.6	57
15	Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Research, 2019, 12, 651-657.	10.4	49
16	A "Biconcave-Alleviated―Strategy to Construct <i>Aspergillus niger</i> -Derived Carbon/MoS ₂ for Ultrastable Sodium Ion Storage. ACS Nano, 2021, 15, 13814-13825.	14.6	49
17	Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. Journal of Materials Chemistry A, 2020, 8, 16323-16331.	10.3	46
18	Lithium Storage in Bowl-like Carbon: The Effect of Surface Curvature and Space Geometry on Li Metal Deposition. ACS Energy Letters, 2021, 6, 2145-2152.	17.4	41

Yong Cheng

#	Article	IF	CITATIONS
19	Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth. Nano Energy, 2019, 66, 104178.	16.0	40
20	Novel three dimensional topological nodal line semimetallic carbon. Carbon, 2016, 98, 468-473.	10.3	36
21	Facilitating the C–C bond cleavage on sub-10 nm concavity-tunable Rh@Pt core–shell nanocubes for efficient ethanol electrooxidation. Journal of Materials Chemistry A, 2019, 7, 17987-17994.	10.3	36
22	Hierarchical Design of Mn ₂ P Nanoparticles Embedded in N,P-Codoped Porous Carbon Nanosheets Enables Highly Durable Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 36247-36258.	8.0	36
23	Insights into the lithiation mechanism of CF _x by a joint high-resolution ¹⁹ F NMR, <i>in situ</i> TEM and ⁷ Li NMR approach. Journal of Materials Chemistry A, 2019, 7, 19793-19799.	10.3	33
24	One-pot synthesis of Pd@Pt ₃ Ni core–shell nanobranches with ultrathin Pt ₃ Ni{111} skins for efficient ethanol electrooxidation. Chemical Communications, 2018, 54, 5185-5188.	4.1	32
25	Monoclinic C16: sp-sp hybridized nodal-line semimetal protected by PT-symmetry. Carbon, 2018, 127, 527-532.	10.3	32
26	Constructing Robust Cross-Linked Binder Networks for Silicon Anodes with Improved Lithium Storage Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 53818-53828.	8.0	32
27	Metallic layered germanium phosphide GeP ₅ for high rate flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19409-19416.	10.3	31
28	Enhanced Cyclability of Lithium Metal Anodes Enabled by Anti-aggregation of Lithiophilic Seeds. Nano Letters, 2022, 22, 5874-5882.	9.1	26
29	Reversible Tuning of Individual Carbon Nanotube Mechanical Properties via Defect Engineering. Nano Letters, 2016, 16, 5221-5227.	9.1	24
30	Antiâ€Aggregation of Nanosized CoS ₂ for Stable Kâ€lon Storage: Insights into Aggregationâ€Induced Electrode Failures. Advanced Energy Materials, 2022, 12, .	19.5	21
31	Liquid phase exfoliation of bismuth nanosheets for flexible all-solid-state supercapacitors with high energy density. Journal of Materials Chemistry C, 2020, 8, 12314-12322.	5.5	19
32	Tin Nanoparticles Encapsulated Carbon Nanoboxes as High-Performance Anode for Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 533.	3.6	18
33	Structural and electrical properties tailoring of carbon nanotubes via a reversible defect handling technique. Carbon, 2018, 133, 186-192.	10.3	15
34	Electrolyte Additive <i>cis</i> -1,2,3,6-Tetrahydrophthalic Anhydride Enhanced the Cycle Life of Nickel-Rich LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ . ACS Applied Energy Materials, 2021, 4, 12275-12284.	5.1	15
35	Interfacial Enhancement of Silicon-Based Anode by a Lactam-Type Electrolyte Additive. ACS Applied Energy Materials, 2021, 4, 10323-10332.	5.1	14
36	Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes. Advanced Materials, 2021, 33, e2105228.	21.0	14

YONG CHENG

#	Article	IF	CITATIONS
37	Seamless interconnections of sp ² -bonded carbon nanostructures <i>via</i> the crystallization of a bridging amorphous carbon joint. Materials Horizons, 2019, 6, 72-80.	12.2	10
38	Manipulating External Electric Field and Tensile Strain toward High Energy Density Stability in Fast-Charging Li-Rich Cathode Materials. Journal of Physical Chemistry Letters, 2020, 11, 2322-2329.	4.6	10
39	Dictating the interfacial stability of nickel-rich LiNi0.90Co0.05Mn0.05O2 via a diazacyclo electrolyte additive – 2-Fluoropyrazine. Journal of Colloid and Interface Science, 2022, 618, 431-441.	9.4	10
40	Top-down fabrication of small carbon nanotubes. Nanoscale Horizons, 2019, 4, 1310-1317.	8.0	8
41	Mitigating the Surface Reconstruction of Ni-Rich Cathode <i>via</i> P2-Type Mn-Rich Oxide Coating for Durable Lithium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 30398-30409.	8.0	7
42	A Guideline for Tailoring Lattice Oxygen Activity in Lithium-Rich Layered Cathodes by Strain. Journal of Physical Chemistry Letters, 2019, 10, 2202-2207.	4.6	6
43	Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope. Nano Letters, 2020, 20, 2279-2287.	9.1	5
44	Diameter, strength and resistance tuning of double-walled carbon nanotubes in a transmission electron microscope. Carbon, 2020, 160, 98-106.	10.3	5
45	Graphene Ingestion and Regrowth on "Carbon-Starved―Metal Electrodes. ACS Nano, 2017, 11, 10575-10582.	14.6	2
46	Lithium Batteries: Stable Nanoâ€Encapsulation of Lithium Through Seedâ€Free Selective Deposition for Highâ€Performance Li Battery Anodes (Adv. Energy Mater. 7/2020). Advanced Energy Materials, 2020, 10, 2070031.	19.5	2
47	sp ² -to-sp ³ transitions in graphite during cold-compression. Physical	2.8	2