Craig Horbinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10991791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The efficacy of an unrestricted cycling ketogenic diet in preclinical models of IDH wild-type and IDH mutant glioma. PLoS ONE, 2022, 17, e0257725.	1.1	2
2	Sarcoma and the nervous system. , 2022, , 401-413.		0
3	The Frequency of Focal Cortical Dysplasia-Like Histologic Features Near Adult-Type Diffuse Gliomas. Journal of Neuropathology and Experimental Neurology, 2022, 81, 48-53.	0.9	0
4	Tumor-associated alterations in white matter connectivity have prognostic significance in MGMT-unmethylated glioblastoma. Journal of Neuro-Oncology, 2022, 158, 331-339.	1.4	1
5	Translocon-associated Protein Subunit SSR3 Determines and Predicts Susceptibility to Paclitaxel in Breast Cancer and Glioblastoma. Clinical Cancer Research, 2022, 28, 3156-3169.	3.2	4
6	Ammonia stimulates SCAP/Insig dissociation and SREBP-1 activation to promote lipogenesis and tumour growth. Nature Metabolism, 2022, 4, 575-588.	5.1	33
7	Major Features of the 2021 WHO Classification of CNS Tumors. Neurotherapeutics, 2022, 19, 1691-1704.	2.1	31
8	Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell, 2022, 185, 2184-2199.e16.	13.5	163
9	Validation of Whole Genome Methylation Profiling Classifier for Central Nervous System Tumors. Journal of Molecular Diagnostics, 2022, 24, 924-934.	1.2	9
10	Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nature Reviews Neurology, 2022, 18, 515-529.	4.9	100
11	Disappearance of MMR-deficient subclones after controlled IL-12 and PD-1 inhibition in a glioma patient. Neuro-Oncology Advances, 2021, 3, vdab045.	0.4	4
12	The effects of palbociclib in combination with radiation in preclinical models of aggressive meningioma. Neuro-Oncology Advances, 2021, 3, vdab085.	0.4	10
13	Loss of H3K27me3 in meningiomas. Neuro-Oncology, 2021, 23, 1282-1291.	0.6	45
14	Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clinical Cancer Research, 2021, 27, 6514-6528.	3.2	48
15	Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncology Advances, 2021, 3, vdab125.	0.4	30
16	ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nature Cancer, 2021, 2, 1372-1386.	5.7	39
17	Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro-Oncology, 2020, 22, 470-479.	0.6	49
18	Ultrasound-mediated Delivery of Paclitaxel for Glioma: A Comparative Study of Distribution, Toxicity, and Efficacy of Albumin-bound Versus Cremophor Formulations. Clinical Cancer Research, 2020, 26, 477-486.	3.2	98

#	Article	IF	CITATIONS
19	Using methylation profiling to diagnose systemic metastases of pleomorphic xanthoastrocytoma. Neuro-Oncology Advances, 2020, 2, vdz057.	0.4	2
20	Beyond thrombosis: the impact of tissue factor signaling in cancer. Journal of Hematology and Oncology, 2020, 13, 93.	6.9	50
21	CD8+ T-cell–Mediated Immunoediting Influences Genomic Evolution and Immune Evasion in Murine Gliomas. Clinical Cancer Research, 2020, 26, 4390-4401.	3.2	36
22	Is Next-Generation Sequencing Alone Sufficient to Reliably Diagnose Gliomas?. Journal of Neuropathology and Experimental Neurology, 2020, 79, 763-766.	0.9	6
23	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	3.2	52
24	Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metabolism, 2020, 32, 229-242.e8.	7.2	160
25	The efficacy of DNA mismatch repair enzyme immunohistochemistry as a screening test for hypermutated gliomas. Acta Neuropathologica Communications, 2020, 8, 15.	2.4	33
26	Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 2020, 22, 1073-1113.	0.6	543
27	Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1537-1570.	2.3	253
28	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nature Cell Biology, 2019, 21, 1003-1014.	4.6	107
29	The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro-Oncology, 2019, 21, 1498-1508.	0.6	49
30	Methylation and transcription patterns are distinct in IDH mutant gliomas compared to other IDH mutant cancers. Scientific Reports, 2019, 9, 8946.	1.6	44
31	DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro-Oncology, 2019, 21, 901-910.	0.6	184
32	Potent Antineoplastic Effects of Combined PI3Kα–MNK Inhibition in Medulloblastoma. Molecular Cancer Research, 2019, 17, 1305-1315.	1.5	10
33	Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nature Medicine, 2019, 25, 462-469.	15.2	569
34	Differences in molecular profiles of glioblastomas according to location. Neuro-Oncology, 2019, 21, 4-5.	0.6	8
35	Molecular and translational advances in meningiomas. Neuro-Oncology, 2019, 21, i4-i17.	0.6	92
36	Commentary: preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma by Garg et al. (2017). Oncolmmunology, 2019, 8, 1548242.	2.1	1

#	Article	IF	CITATIONS
37	Methylation-dependent Tissue Factor Suppression Contributes to the Reduced Malignancy of IDH1-mutant Gliomas. Clinical Cancer Research, 2019, 25, 747-759.	3.2	35
38	Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro-Oncology, 2018, 20, 1197-1206.	0.6	27
39	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	0.6	119
40	Surgical Resection and Adjuvant Radiation Therapy in the Treatment of Skull Base Chordomas. World Neurosurgery, 2018, 115, e13-e21.	0.7	24
41	Differential Response of Glioma Stem Cells to Arsenic Trioxide Therapy Is Regulated by MNK1 and mRNA Translation. Molecular Cancer Research, 2018, 16, 32-46.	1.5	29
42	Indoleamine 2,3-dioxygenase 1 and overall survival of patients diagnosed with esophageal cancer. Oncotarget, 2018, 9, 23482-23493.	0.8	17
43	Mutant IDH1 and seizures in patients with glioma. Neurology, 2017, 88, 1805-1813.	1.5	167
44	Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Reports, 2017, 19, 1858-1873.	2.9	164
45	Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival. Clinical Cancer Research, 2017, 23, 6650-6660.	3.2	141
46	Inhibition of DNA damage repair by the CDK4/6 inhibitor palbociclib delays irradiated intracranial atypical teratoid rhabdoid tumor and glioblastoma xenograft regrowth. Neuro-Oncology, 2016, 18, now106.	0.6	73
47	MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma. Molecular Cancer Research, 2016, 14, 984-993.	1.5	38
48	Mutant IDH1 and thrombosis in gliomas. Acta Neuropathologica, 2016, 132, 917-930.	3.9	130
49	Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1–Mediated Lipogenesis. Clinical Cancer Research, 2016, 22, 5337-5348.	3.2	210
50	Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro-Oncology, 2016, 18, 379-387.	0.6	101
51	CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget, 2015, 6, 29675-29693.	0.8	53
52	Refractory anaplastic astrocytoma responsive to PCV in combination with bevacizumab. Case Reports in Clinical Pathology, 2015, 2, .	0.0	0
53	Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma. PLoS ONE, 2015, 10, e0134426.	1.1	30
54	Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro-Oncology, 2015, 17, 478-9.	0.6	1

#	Article	IF	CITATIONS
55	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	7.7	249
56	Lgr5 Marks Post-Mitotic, Lineage Restricted Cerebellar Granule Neurons during Postnatal Development. PLoS ONE, 2014, 9, e114433.	1.1	14
57	Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathologica, 2014, 127, 221-233.	3.9	68
58	Cancer Stem Cell-Specific Scavenger Receptor CD36 Drives Glioblastoma Progression. Stem Cells, 2014, 32, 1746-1758.	1.4	182
59	Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1985-1996.	1.1	933
60	The tumor suppressor prostate apoptosis response-4 (Par-4) is regulated by mutant IDH1 and kills glioma stem cells. Acta Neuropathologica, 2014, 128, 723-732.	3.9	16
61	Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro-Oncology, 2014, 16, 1478-1483.	0.6	64
62	<scp><i>PDGFRA</i></scp> Amplification is Common in Pediatric and Adult Highâ€Grade Astrocytomas and Identifies a Poor Prognostic Group in <scp>IDH</scp> 1 Mutant Glioblastoma. Brain Pathology, 2013, 23, 565-573.	2.1	83
63	How Molecular Testing Can Help (and Hurt) in the Workup of Gliomas. American Journal of Clinical Pathology, 2013, 139, 275-288.	0.4	6
64	What do we know about IDH1/2 mutations so far, and how do we use it?. Acta Neuropathologica, 2013, 125, 621-636.	3.9	133
65	To <i>BRAF</i> or Not to <i>BRAF</i> : Is That Even a Question Anymore?. Journal of Neuropathology and Experimental Neurology, 2013, 72, 2-7.	0.9	98
66	Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-Oncology, 2012, 14, 777-789.	0.6	125
67	The Importance of 10q Status in an Outcomes-Based Comparison Between 1p/19q Fluorescence In Situ Hybridization and Polymerase Chain Reaction–Based Microsatellite Loss of Heterozygosity Analysis of Oligodendrogliomas. Journal of Neuropathology and Experimental Neurology, 2012, 71, 73-82.	0.9	30
68	Paradoxical Relationship Between the Degree of EGFR Amplification and Outcome in Glioblastomas. American Journal of Surgical Pathology, 2012, 36, 1186-1193.	2.1	56
69	Low rate of R132H IDH1 mutation in infratentorial and spinal cord grade II and III diffuse gliomas. Acta Neuropathologica, 2012, 124, 449-451.	3.9	50
70	Something Old and Something New About Molecular Diagnostics in Gliomas. Surgical Pathology Clinics, 2012, 5, 919-939.	0.7	12
71	EGFR Expression Stratifies Oligodendroglioma Behavior. American Journal of Pathology, 2011, 179, 1638-1644.	1.9	25
72	Gone FISHing: Clinical Lessons Learned in Brain Tumor Molecular Diagnostics over the Last Decade. Brain Pathology, 2011, 21, 57-73.	2.1	93

#	Article	IF	CITATIONS
73	Isocitrate Dehydrogenase 1 Analysis Differentiates Gangliogliomas from Infiltrative Gliomas. Brain Pathology, 2011, 21, 564-574.	2.1	55
74	Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathologica, 2010, 119, 641-649.	3.9	136
75	Impact of Morphology, MIBâ€1, p53 and <i>MGMT</i> on Outcome in Pilocytic Astrocytomas. Brain Pathology, 2010, 20, 581-588.	2.1	30
76	Detection of IDH1 and IDH2 Mutations by Fluorescence Melting Curve Analysis as a Diagnostic Tool for Brain Biopsies. Journal of Molecular Diagnostics, 2010, 12, 487-492.	1.2	72
77	Live Free or Die. American Journal of Pathology, 2010, 177, 1044-1052.	1.9	85
78	Practical molecular diagnostics in neuropathology: making a tough job a little easier. Seminars in Diagnostic Pathology, 2010, 27, 105-113.	1.0	17
79	The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Archives of Pathology and Laboratory Medicine, 2010, 134, 1170-6.	1.2	24
80	The Prognostic Value of Ki-67, p53, Epidermal Growth Factor Receptor, 1p36, 9p21, 10q23, and 17p13 in Skull Base Chordomas. Archives of Pathology and Laboratory Medicine, 2010, 134, 1170-1176.	1.2	62
81	YKL-40 is directly produced by tumor cells and is inversely linked to EGFR in glioblastomas. International Journal of Clinical and Experimental Pathology, 2010, 3, 226-37.	0.5	21
82	Comparison of telepathology systems in neuropathological intraoperative consultations. Neuropathology, 2009, 29, 655-663.	0.7	21
83	Chordoid Glioma: A Case Report and Molecular Characterization of Five Cases. Brain Pathology, 2009, 19, 439-448.	2.1	36
84	Application of Telepathology for Neuropathologic Intraoperative Consultations. Brain Pathology, 2009, 19, 317-322.	2.1	20
85	Diagnostic Use of <i>IDH1/2</i> Mutation Analysis in Routine Clinical Testing of Formalin-Fixed, Paraffin-Embedded Glioma Tissues. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1319-1325.	0.9	141
86	Primary intracranial dural-based synovial sarcoma with an unusual SYT fluorescence in situ hybridization pattern. Journal of Neurosurgery, 2008, 109, 897-903.	0.9	15
87	Telepathology for Intraoperative Neuropathologic Consultations at an Academic Medical Center: A 5-Year Report. Journal of Neuropathology and Experimental Neurology, 2007, 66, 750-759.	0.9	45
88	Regulation of Autophagy by Extracellular Signal-Regulated Protein Kinases During 1-Methyl-4-Phenylpyridinium-Induced Cell Death. American Journal of Pathology, 2007, 170, 75-86.	1.9	428
89	6-Hydroxydopamine induces mitochondrial ERK activation. Free Radical Biology and Medicine, 2007, 43, 372-383.	1.3	84
90	Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radical Biology and Medicine, 2005, 38, 2-11.	1.3	215

#	Article	IF	CITATIONS
91	DMT1: a mammalian transporter for multiple metals. BioMetals, 2003, 16, 41-54.	1.8	311
92	Mechanisms of Manganese-Induced Rat Pheochromocytoma (PC12) Cell Death and Cell Differentiation. NeuroToxicology, 2002, 23, 147-157.	1.4	89
93	Differential Localization of Divalent Metal Transporter 1 with and without Iron Response Element in Rat PC12 and Sympathetic Neuronal Cells. Journal of Neuroscience, 2000, 20, 7595-7601.	1.7	87