
Regina C Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1099167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute axon damage and demyelination are mitigated by 4-aminopyridine (4-AP) therapy after experimental traumatic brain injury. Acta Neuropathologica Communications, 2022, 10, 67.	2.4	4
2	Repetitive Blast Exposure Produces White Matter Axon Damage without Subsequent Myelin Remodeling: In Vivo Analysis of Brain Injury Using Fluorescent Reporter Mice. Neurotrauma Reports, 2021, 2, 180-192.	0.5	6
3	Expression of GFAP and Tau Following Blast Exposure in the Cerebral Cortex of Ferrets. Journal of Neuropathology and Experimental Neurology, 2021, 80, 112-128.	0.9	16
4	Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures. Acta Neuropathologica Communications, 2021, 9, 89.	2.4	23
5	Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathologica Communications, 2020, 8, 84.	2.4	21
6	Traumatic microbleeds suggest vascular injury and predict disability in traumatic brain injury. Brain, 2019, 142, 3550-3564.	3.7	83
7	Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Experimental Neurology, 2019, 321, 113040.	2.0	59
8	Genetic detection of Sonic hedgehog (Shh) expression and cellular response in the progression of acute through chronic demyelination and remyelination. Neurobiology of Disease, 2018, 115, 145-156.	2.1	27
9	Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination. Experimental Neurology, 2018, 299, 122-136.	2.0	40
10	Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery. Journal of Neuroscience, 2018, 38, 8723-8736.	1.7	70
11	Leukemia/lymphomaâ€related factor (LRF) exhibits stage―and contextâ€dependent transcriptional controls in the oligodendrocyte lineage and modulates remyelination. Journal of Neuroscience Research, 2017, 95, 2391-2408.	1.3	7
12	The Biological Basis of Chronic Traumatic Encephalopathy following Blast Injury: A Literature Review. Journal of Neurotrauma, 2017, 34, S-26-S-43.	1.7	26
13	Repetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging, Histopathology, and Behavior. Journal of Neurotrauma, 2017, 34, 1364-1381.	1.7	71
14	Transplanted Adult Neural Stem Cells Express Sonic Hedgehog In Vivo and Suppress White Matter Neuroinflammation after Experimental Traumatic Brain Injury. Stem Cells International, 2017, 2017, 1-16.	1.2	14
15	Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurology, The, 2016, 15, 944-953.	4.9	156
16	White matter involvement after TBI: Clues to axon and myelin repair capacity. Experimental Neurology, 2016, 275, 328-333.	2.0	186
17	Outcome after Repetitive Mild Traumatic Brain Injury Is Temporally Related to Glucose Uptake Profile at Time of Second Injury. Journal of Neurotrauma, 2016, 33, 1479-1491.	1.7	41
18	Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology, 2016, 110, 654-659.	2.0	104

#	Article	IF	CITATIONS
19	Components of Myelin Damage and Repair in the Progression of White Matter Pathology After Mild Traumatic Brain Injury. Journal of Neuropathology and Experimental Neurology, 2015, 74, 218-232.	0.9	160
20	Comparison of Cortical and White Matter Traumatic Brain Injury Models Reveals Differential Effects in the Subventricular Zone and Divergent Sonic Hedgehog Signaling Pathways in Neuroblasts and Oligodendrocyte Progenitors. ASN Neuro, 2014, 6, 175909141455178.	1.5	46
21	FGF2 and FGFR1 signaling regulate functional recovery following cuprizone demyelination. Neuroscience Letters, 2013, 548, 280-285.	1.0	35
22	Oligodendrocyte Lineage and Subventricular Zone Response to Traumatic Axonal Injury in the Corpus Callosum. Journal of Neuropathology and Experimental Neurology, 2013, 72, 1106-1125.	0.9	76
23	Mild Traumatic Brain Injury Results in Depressed Cerebral Glucose Uptake: An ¹⁸ FDG PET Study. Journal of Neurotrauma, 2013, 30, 1943-1953.	1.7	71
24	Astrogliosis During Acute and Chronic Cuprizone Demyelination and Implications for Remyelination. ASN Neuro, 2012, 4, AN20120062.	1.5	92
25	Leukemia/lymphomaâ€related factor regulates oligodendrocyte lineage cell differentiation in developing white matter. Clia, 2012, 60, 1378-1390.	2.5	7
26	Fibroblast growth factor 1 (FGFR1) modulation regulates repair capacity of oligodendrocyte progenitor cells following chronic demyelination. Neurobiology of Disease, 2012, 45, 196-205.	2.1	48
27	Reduced Axonopathy and Enhanced Remyelination After Chronic Demyelination in Fibroblast Growth Factor 2 <i>(Fgf2)</i> -Null Mice: Differential Detection With Diffusion Tensor Imaging. Journal of Neuropathology and Experimental Neurology, 2011, 70, 157-165.	0.9	36
28	Rostrocaudal Analysis of Corpus Callosum Demyelination and Axon Damage Across Disease Stages Refines Diffusion Tensor Imaging Correlations With Pathological Features. Journal of Neuropathology and Experimental Neurology, 2010, 69, 704-716.	0.9	150
29	Initiation of Oligodendrocyte Progenitor Cell Migration by a PDGF-A Activated Extracellular Regulated Kinase (ERK) Signaling Pathway. Neurochemical Research, 2009, 34, 169-181.	1.6	75
30	Cuprizone Demyelination of the Corpus Callosum in Mice Correlates with Altered Social Interaction and Impaired Bilateral Sensorimotor Coordination. ASN Neuro, 2009, 1, AN20090032.	1.5	76
31	Musashi1 RNAâ€binding protein regulates oligodendrocyte lineage cell differentiation and survival. Glia, 2008, 56, 318-330.	2.5	21
32	Myelin repair strategies: a cellular view. Current Opinion in Neurology, 2008, 21, 278-283.	1.8	50
33	Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. Future Neurology, 2007, 2, 689-697.	0.9	19
34	Platelet-Derived Growth Factor Promotes Repair of Chronically Demyelinated White Matter. Journal of Neuropathology and Experimental Neurology, 2007, 66, 975-988.	0.9	92
35	Interaction of fibroblast growth factor 2 (FGF2) and notch signaling components in inhibition of oligodendrocyte progenitor (OP) differentiation. Neuroscience Letters, 2007, 421, 27-32.	1.0	25
36	Myelin transcription factor 1 (Myt1) expression in demyelinated lesions of rodent and human CNS. Glia, 2007, 55, 687-697.	2.5	40

REGINA C ARMSTRONG

#	Article	IF	CITATIONS
37	Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroImage, 2006, 32, 1195-1204.	2.1	205
38	Endogenous Cell Repair of Chronic Demyelination. Journal of Neuropathology and Experimental Neurology, 2006, 65, 245-256.	0.9	111
39	Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia, 2006, 54, 578-590.	2.5	51
40	Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magnetic Resonance in Medicine, 2006, 55, 302-308.	1.9	413
41	In vivo analysis of oligodendrocyte lineage development in postnatal FGF2 null mice. Glia, 2005, 49, 542-554.	2.5	52
42	Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage, 2005, 26, 132-140.	2.1	1,482
43	PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiology of Disease, 2005, 19, 171-182.	2.1	129
44	Myelin transcription factor 1 (Myt1) modulates the proliferation and differentiation of oligodendrocyte lineage cells. Molecular and Cellular Neurosciences, 2004, 25, 111-123.	1.0	90
45	PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. Journal of Neurobiology, 2003, 54, 457-472.	3.7	110
46	Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production. Neurobiology of Disease, 2003, 13, 89-101.	2.1	91
47	Nuclear organization in differentiating oligodendrocytes. Journal of Cell Science, 2002, 115, 4071-4079.	1.2	67
48	Absence of Fibroblast Growth Factor 2 Promotes Oligodendroglial Repopulation of Demyelinated White Matter. Journal of Neuroscience, 2002, 22, 8574-8585.	1.7	163
49	Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. Journal of Neuroscience Research, 2000, 62, 241-256.	1.3	144
50	Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central nervous system hypomyelination syndrome. Acta Neuropathologica, 2000, 100, 635-646.	3.9	90
51	Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. , 2000, 62, 241.		1
52	Dysembryoplastic Neuroepithelial Tumor. Archives of Pathology and Laboratory Medicine, 2000, 124, 123-126.	1.2	13
53	Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia, 1999, 26, 22-35.	2.5	108
54	In vivo proliferation of oligodendrocyte progenitors expressing PDGF?R during early remyelination. , 1998, 37, 413-428.		227

REGINA C ARMSTRONG

#	Article	IF	CITATIONS
55	Isolation and Characterization of Immature Oligodendrocyte Lineage Cells. Methods, 1998, 16, 282-292.	1.9	73
56	High-grade Human Brain Tumors Exhibit Increased Expression of Myelin Transcription Factor 1 (MYT1), a Zinc Finger DNA-binding Protein. Journal of Neuropathology and Experimental Neurology, 1997, 56, 772-781.	0.9	22
57	In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. , 1997, 50, 229-237.		54
58	Myelin transcription factor 1 (Myt1) of the oligodendrocyte lineage, along with a closely related CCHC zinc finger, is expressed in developing neurons in the mammalian central nervous system. , 1997, 50, 272-290.		100
59	Expression of myelin transcription factor I (MyTI), a "Zinc-Finger―DNA-binding protein, in developing oligodendrocytes. Glia, 1995, 14, 303-321.	2.5	85
60	Astrocytes and O-2A Progenitors Migrate Toward Distinct Molecules in a Microchemotaxis Chamber. Annals of the New York Academy of Sciences, 1991, 633, 520-522.	1.8	22
61	The cellular and molecular events of central nervous system remyelination. BioEssays, 1990, 12, 569-576.	1.2	53
62	Axonal transport through nodes of Ranvier. Brain Research, 1987, 412, 196-199.	1.1	28