Yoshifumi Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1099128/publications.pdf

Version: 2024-02-01

1040056 940533 17 262 9 16 citations h-index g-index papers 17 17 17 358 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Observation of the quantum valley Hall state in ballistic graphene superlattices. Science Advances, 2018, 4, eaaq0194.	10.3	78
2	Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8533-8538.	8.0	49
3	Topological valley currents in bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Letters, 2019, 114, .	3.3	29
4	Field-induced confined states in graphene. Applied Physics Letters, 2014, 104, 053108.	3.3	19
5	Fabrication of quantum-dot devices in graphene. Science and Technology of Advanced Materials, 2010, 11, 054601.	6.1	15
6	Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes. Applied Physics Letters, 2016, 108, .	3. 3	14
7	Fabry–Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts. Scientific Reports, 2019, 9, 3031.	3.3	11
8	Highâ€ <i>T</i> _c cuprate superconductivity as a new paradigm. Physica Status Solidi (B): Basic Research, 2007, 244, 4371-4385.	1.5	10
9	Single-Carrier Transport in Graphene/hBN Superlattices. Nano Letters, 2020, 20, 2551-2557.	9.1	10
10	Effect of gap width on electron transport through quantum point contact in hBN/graphene/hBN in the quantum Hall regime. Applied Physics Letters, 2019, 114, 023101.	3.3	6
11	Room-temperature negative magnetoresistance of helium-ion-irradiated defective graphene in the strong Anderson localization regime. Carbon, 2021, 175, 87-92.	10.3	6
12	Electron transport tuning of graphene by helium ion irradiation. Nano Express, 2022, 3, 024002.	2.4	5
13	Manipulation of phase slips in carbon-nanotube-templated niobium-nitride superconducting nanowires under microwave radiation. Scientific Reports, 2020, 10, 14278.	3.3	4
14	Triplet Superconductivity in a Nutshell. Journal of Superconductivity and Novel Magnetism, 2009, 22, 71-74.	1.8	2
15	Fabrication of folded bilayer-bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Express, 2020, 13, 035003.	2.4	2
16	Discrete quantum levels and Zeeman splitting in ultra-thin gold-nanowire quantum dots. Journal of Applied Physics, 2019, 126, 044303.	2.5	1
17	Localization to delocalization probed by magnetotransport of hBN/graphene/hBN stacks in the ultra-clean regime. Scientific Reports, 2021, 11, 18845.	3.3	1